Skip to main content
Log in

Prescribed-time control of four-wheel independently driven skid-steering mobile robots with prescribed performance

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the trajectory tracking control problem of a four-wheel independently driven skid-steering mobile robot (FWID-SSMR) while considering friction resistance, parameter variation and external disturbances. Unlike previous studies that only achieved stable tracking control of FWID-SSMR, this paper accomplishes prescribed steady-state and transient performance. Based on the dynamic model of FWID-SSMR, an integer-order prescribed-time controller (IOPTC) is developed first, which can make the tracking errors converge to a predetermined residual set with a preset convergence rate in a prescribed time. Motivated by it, a fractional-order prescribed-time controller (FOPTC) is developed by exploiting the genetic attenuation properties of fractional calculus (FC) for improving the control performance. The feasibility and effectiveness of the developed controller are verified by Lyapunov theoretical analysis and numerical simulation studies. The simulation results show that both the IOPTC and FOPTC outperform the feedback controller (FBC). Moreover, the influence of the performance function on control performance is also tested, which can serve as a reference for selecting the appropriate performance function to use in future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Dai, H., Chen, P., Yang, H.: Driving torque distribution strategy of skid-steering vehicles with knowledge-assisted reinforcement learning. Appl. Sci. 12(10), 5171 (2022)

    Article  Google Scholar 

  2. Salgado, I., Cruz-Ortiz, D., Camacho, O., Chairez, I.: Output feedback control of a skid-steered mobile robot based on the super-twisting algorithm. Control. Eng. Pract. 58, 193–203 (2017)

    Article  Google Scholar 

  3. Ling, Y., Wu, J., Lyu, Z., Xiong, P.: Backstepping controller for laser ray tracking of a target mobile robot. Meas. Control 53(7–8), 1540–1547 (2020)

    Article  Google Scholar 

  4. Ibrahim, F., Abouelsoud, A., Fath El Bab, A.M., Ogata, T.: Discontinuous stabilizing control of skid-steering mobile robot (SSMR). J. Intell. Robot. Syst. 95, 253–266 (2019)

    Article  Google Scholar 

  5. Huskić, G., Buck, S., Herrb, M., Lacroix, S., Zell, A.: High-speed path following control of skid-steered vehicles. Int. J. Robot. Res. 38(9), 1124–1148 (2019)

    Article  Google Scholar 

  6. Chen, Y., Li, N., Zeng, W., Zhang, S., Ma, G.: Curved path following controller for 4w skid-steering mobile robots using backstepping. IEEE Access 10, 66072–66082 (2022)

    Article  Google Scholar 

  7. Matraji, I., Al-Durra, A., Haryono, A., Al-Wahedi, K., Abou-Khousa, M.: Trajectory tracking control of skid-steered mobile robot based on adaptive second order sliding mode control. Control. Eng. Pract. 72, 167–176 (2018)

    Article  Google Scholar 

  8. Zhang, J., Li, S., Meng, H., Li, Z., Sun, Z.: Variable gain based composite trajectory tracking control for 4-wheel skid-steering mobile robots with unknown disturbances. Control. Eng. Pract. 132, 105,428 (2023)

    Article  Google Scholar 

  9. Hoang, N.B., Kang, H.J.: Neural network-based adaptive tracking control of mobile robots in the presence of wheel slip and external disturbance force. Neurocomputing 188, 12–22 (2016)

    Article  Google Scholar 

  10. Liao, J., Chen, Z., Yao, B.: Performance-oriented coordinated adaptive robust control for four-wheel independently driven skid steer mobile robot. IEEE Access 5, 19048–19057 (2017)

    Article  Google Scholar 

  11. Liao, J., Chen, Z., Yao, B.: Model-based coordinated control of four-wheel independently driven skid steer mobile robot with wheel-ground interaction and wheel dynamics. IEEE Trans. Ind. Inform. 15(3), 1742–1752 (2018)

    Article  Google Scholar 

  12. Prado, Á.J., Torres-Torriti, M., Yuz, J., Cheein, F.A.: Tube-based nonlinear model predictive control for autonomous skid-steer mobile robots with tire–terrain interactions. Control. Eng. Pract. 101, 104,451 (2020)

    Article  Google Scholar 

  13. Fan, Z., Li, X., Zhu, Y., Hao, B., Li, S., Zhou, T.: Research on trajectory tracking control of skid steering vehicle based on model predictive control. In: 2021 6th International Conference on Intelligent Transportation Engineering (ICITE 2021), pp. 929–941. Springer, Berlin (2022)

  14. Song, Y., Zhou, S.: Neuroadaptive control with given performance specifications for mimo strict-feedback systems under nonsmooth actuation and output constraints. IEEE Trans. Neur. Net. Lear. 29(9), 4414–4425 (2017)

    Article  Google Scholar 

  15. Song, Q., Ge, M.: Finite-time control of high-speed train with guaranteed steady-state and transient performance. IEEE Trans. Intell. Transp. Syst. 23(12), 23761–23770 (2022)

    Article  Google Scholar 

  16. Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Contr. 57(8), 2106–2110 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lu, K., Liu, Z., Wang, Y., Chen, C.P.: Fixed-time adaptive fuzzy control for uncertain nonlinear systems. IEEE Trans. Fuzzy Syst. 29(12), 3769–3781 (2020)

    Article  Google Scholar 

  18. Sun, J., Yi, J., Pu, Z.: Fixed-time adaptive fuzzy control for uncertain nonstrict-feedback systems with time-varying constraints and input saturations. IEEE Trans. Fuzzy Syst. 30(4), 1114–1128 (2021)

    Article  Google Scholar 

  19. Yu, Z., Li, Y., Lv, M., Chang, J., Pei, B.: Predefined-time anti-saturation fault-tolerant attitude control for tailless aircraft with guaranteed output constraints. Nonlinear Dyn. 111, 1399–1416 (2022)

    Article  Google Scholar 

  20. Xu, K.T., Ge, M.F., Liang, C.D., Ding, T.F., Zhan, X.S.: Predefined-time time-varying formation control of networked autonomous surface vehicles: a velocity-and model-free approach. Nonlinear Dyn. 108(4), 3605–3622 (2022)

    Article  Google Scholar 

  21. Huang, S., Wang, J., Xiong, L., Liu, J., Li, P., Wang, Z.: Distributed predefined-time fractional-order sliding mode control for power system with prescribed tracking performance. IEEE Trans. Power Syst. 37(3), 2233–2246 (2021)

    Article  Google Scholar 

  22. Ge, M., Song, Q., Hu, X., Zhang, H.: Rbfnn-based fractional-order control of high-speed train with uncertain model and actuator failures. IEEE Trans. Intell. Transp. Syst. 21(9), 3883–3892 (2019)

    Article  Google Scholar 

  23. Rojas-Moreno, A., Perez-Valenzuela, G.: Fractional order tracking control of a wheeled mobile robot. In: 2017 IEEE XXIV International Conference on Electronics, Electrical Engineering and Computing (INTERCON), pp. 1–4. IEEE (2017)

  24. Ardjal, A., Bettayeb, M., Mansouri, R., Zouak, B.: Design and implementation of a model-free fractional order intelligent pi fractional order sliding mode controller for water level tank system. ISA Trans. 127, 501–510 (2022)

    Article  Google Scholar 

  25. Singhal, K., Kumar, V., Rana, K.: Robust trajectory tracking control of non-holonomic wheeled mobile robots using an adaptive fractional order parallel fuzzy pid controller. J. Franklin Inst. 359(9), 4160–4215 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  26. Xie, Y., Zhang, X., Meng, W., Zheng, S., Jiang, L., Meng, J., Wang, S.: Coupled fractional-order sliding mode control and obstacle avoidance of a four-wheeled steerable mobile robot. ISA Trans. 108, 282–294 (2021)

    Article  Google Scholar 

  27. Chatzikomis, C., Zanchetta, M., Gruber, P., Sorniotti, A., Modic, B., Motaln, T., Blagotinsek, L., Gotovac, G.: An energy-efficient torque-vectoring algorithm for electric vehicles with multiple motors. Mech. Syst. Signal Process. 128, 655–673 (2019)

    Article  Google Scholar 

  28. De Novellis, L., Sorniotti, A., Gruber, P.: Wheel torque distribution criteria for electric vehicles with torque-vectoring differentials. IEEE Trans. Veh. Technol. 63(4), 1593–1602 (2013)

    Article  Google Scholar 

  29. Prasad, R., Ma, Y.: Hierarchical control coordination strategy of six wheeled independent drive (6wid) skid steering vehicle. IFAC-PapersOnLine 52(5), 60–65 (2019)

    Article  Google Scholar 

  30. Hsu, L.Y., Chen, T.L.: An optimal wheel torque distribution controller for automated vehicle trajectory following. IEEE Trans. Veh. Technol. 62(6), 2430–2440 (2013)

    Article  Google Scholar 

  31. Deng, H., Zhao, Y., Nguyen, A.T., Huang, C.: Fault-tolerant predictive control with deep-reinforcement-learning-based torque distribution for four in-wheel motor drive electric vehicles. IEEE-ASME Trans. Mech. 28(3), 668–680 (2023)

  32. Gorenflo, R., Mainardi, F.: Fractional Calculus: Integral and Differential Equations of Fractional Order. Springer, Berlin (1997)

    MATH  Google Scholar 

  33. Matar, M.M., Abu Skhail, E.S.: On stability of nonautonomous perturbed semilinear fractional differential systems of order \(\alpha \in (1,2)\). J. Math. 2018(172381), 1–10 (2018)

  34. Tavazoei, M.S., Haeri, M.: A note on the stability of fractional order systems. Math. Comput. Simul. 79(5), 1566–1576 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhao, K., Song, Y., Ma, T., He, L.: Prescribed performance control of uncertain Euler–Lagrange systems subject to full-state constraints. IEEE Trans. Neur. Net. Lear. 29(8), 3478–3489 (2017)

    MathSciNet  Google Scholar 

  36. Zhou, S., Song, Y.: Prescribed performance neuroadaptive fault-tolerant compensation for mimo nonlinear systems under extreme actuator failures. IEEE Trans. Syst. Man Cybern. Syst. 51(9), 5427–5436 (2019)

  37. Rodriguez-Seda, E.J., Tang, C., Spong, M.W., Stipanović, D.M.: Trajectory tracking with collision avoidance for nonholonomic vehicles with acceleration constraints and limited sensing. Int. J. Robot. Res. 33(12), 1569–1592 (2014)

    Article  Google Scholar 

  38. Tao, G.: A simple alternative to the Barbalat lemma. IEEE Trans. Autom. Contr. 42(5), 698 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, F., Li, C.: Stability analysis of fractional differential systems with order lying in (1, 2). Adv. Differ. Equ. 2011, 1–17 (2011)

    Article  MathSciNet  Google Scholar 

  40. Bateman, H.: Higher transcendental functions [volumes i–iii], vol. 1. McGRAW-HILL Book Company, New York (1953)

  41. Chen, Y., Wang, J.: Adaptive energy-efficient control allocation for planar motion control of over-actuated electric ground vehicles. IEEE Trans. Control Syst. Technol. 22(4), 1362–1373 (2013)

    Google Scholar 

  42. Chen, Y., Wang, J.: Design and experimental evaluations on energy efficient control allocation methods for overactuated electric vehicles: Longitudinal motion case. IEEE-ASME Trans. Mech. 19(2), 538–548 (2013)

    Article  Google Scholar 

  43. Mohammadpour, E., Naraghi, M.: Robust adaptive stabilization of skid steer wheeled mobile robots considering slipping effects. Adv. Robot. 25(1–2), 205–227 (2011)

    Article  Google Scholar 

Download references

Funding

This work is supported by the Ministry of Education Research in the Humanities and Social Sciences Planning fund under Grant 22A10004024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, M., Xu, Hz. & Song, Q. Prescribed-time control of four-wheel independently driven skid-steering mobile robots with prescribed performance. Nonlinear Dyn 111, 20991–21005 (2023). https://doi.org/10.1007/s11071-023-08926-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08926-5

Keywords

Navigation