Skip to main content
Log in

State estimation in mechanical systems of fractional-order based on a family of proportional \({\varvec{\rho }}\)-integral observers

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In control theory, there are many proposals to solve the problem of observer design. This paper studies the Mittag-Leffler stability of a class of dynamic observers for nonlinear fractional-order systems, given in the observable canonical form and defined by the Caputo fractional derivative. We prove that the Riemann–Liouville integral could be employed to provide robustness against noisy measurements during the estimation problem. Based on this advantage, the main result of this paper consists of the design of a family of high-gain proportional \(\rho \)-integral observers employed to estimate unmeasured state variables of nonlinear fractional systems of commensurate order. Three illustrative numerical examples of mechanical systems are provided, which corroborate the effectiveness of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Chen, C.T.: Linear system theory and design (1999)

  2. Luenberger, D.G.: Observing the state of a linear system. IEEE Trans. Milit. Electron. 8(2), 74–80 (1964)

    Google Scholar 

  3. Luenberger, D.G.: Observers for multivariable systems. IEEE Trans. Autom. Control 11(2), 190–197 (1966)

    Google Scholar 

  4. Luenberger, D.G.: An introduction to observers. IEEE Trans. Autom. Control 16(6), 596–602 (1971)

    Google Scholar 

  5. Pyrkin, A., Bobtsov, A., Ortega, R., Isidori, A.: An adaptive observer for uncertain linear time-varying systems with unknown additive perturbations. Automatica 147, 110677 (2023)

    MathSciNet  MATH  Google Scholar 

  6. Pyrkin, A., Bobtsov, A., Ortega, R., Vedyakov, A., Cherginets, D., Ovcharov, A., Bazylev, D., Petranevsky, I.: Robust nonlinear observer design for permanent magnet synchronous motors. IET Control Theory Appl. 15(4), 604–616 (2021)

    MathSciNet  Google Scholar 

  7. Mahony, R., van Goor, P., Hamel, T.: Observer design for nonlinear systems with equivariance. Ann. Rev. Control Robot. Auton. Syst. 5, 221–252 (2022)

    Google Scholar 

  8. Wang, B., Chen, W., Zhang, B., Shi, P., Zhang, H.: A nonlinear observer-based approach to robust cooperative tracking for heterogeneous spacecraft attitude control and formation applications. IEEE Transact. Autom. Control 68(1), 400–407 (2022)

    MathSciNet  MATH  Google Scholar 

  9. Ţiclea, A., Besançon, G.: Adaptive observer design for discrete time LTV systems. Int. J. Control 89(12), 2385–2395 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Efimov, D., Polyakov, A., Levant, A., Perruquetti, W.: Convergence acceleration for observers by gain commutation. Int. J. Control 91(9), 2009–2018 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Liu, H., Zhao, F., Chen, X., Hou, H., Qiu, J.: Observer-based finite-time H\({}_\infty \) sliding mode control of stochastic nonlinear singular systems and its applications. Nonlinear Dynamics pp 1–10 (2022)

  12. Li, S., Chen, Y., Zhan, J.: Simultaneous observer-based fault detection and event-triggered consensus control for multi-agent systems. J. Frankl. Instit. 358(6), 3276–3301 (2021)

    MathSciNet  MATH  Google Scholar 

  13. Izadbakhsh, A., Nikdel, N.: Chaos synchronization using differential equations as extended state observer. Chaos Solitons Fract. 153, 111433 (2021)

    MathSciNet  MATH  Google Scholar 

  14. Ran, M., Li, J., Xie, L.: A new extended state observer for uncertain nonlinear systems. Automatica 131, 109772 (2021)

    MathSciNet  MATH  Google Scholar 

  15. Zhang, H., Liu, Y., Wang, Y.: Observer-based finite-time adaptive fuzzy control for nontriangular nonlinear systems with full-state constraints. IEEE Transact. Cybern. 51(3), 1110–1120 (2020)

    Google Scholar 

  16. Chang, J., Cieslak, J., Guo, Z., Henry, D.: On the synthesis of a sliding-mode-observer-based adaptive fault-tolerant flight control scheme. ISA Transact. 111, 8–23 (2021)

    Google Scholar 

  17. Aguilar-López, R., Neria-González, M.I., Mata-Machuca, J.L.: Finite time estimation for switched nonlinear systems: application to stirred tank bioreactor. Int. J. Chem. React. Eng. 15(5), 20170021 (2017)

    Google Scholar 

  18. Parvizian, M., Khandani, K.: Hyperbolic observer design for a class of nonlinear systems. Chaos, Solitons Fract. 145, 110785 (2021)

    MathSciNet  MATH  Google Scholar 

  19. Diethelm, K., Kiryakova, V., Luchko, Y., Machado, J., Tarasov, V.E.: Trends, directions for further research, and some open problems of fractional calculus. Nonlinear Dyn. 107(4), 3245–3270 (2022)

    Google Scholar 

  20. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    MATH  Google Scholar 

  21. Podlubny, I.: Fractional Differential Equations, vol. 198. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  22. Machado, J.A.T., Silva, M.F., Barbosa, R.S., Jesus, I.S., Reis, C.M., Marcos, M.G., Galhano, A.F.: Some applications of fractional calculus in engineering. Math. Probl. Eng. 2010, 1–34 (2010)

    MATH  Google Scholar 

  23. Gómez-Aguilar, J.F., Razo-Hernández, R., Granados-Lieberman, D.: A physical interpretation of fractional calculus in observables terms: analysis of the fractional time constant and the transitory response. Rev. Mex. Fís. 60(1), 32–38 (2014)

    MathSciNet  Google Scholar 

  24. Heymans, N., Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheol. Acta 45(5), 765–771 (2006)

    Google Scholar 

  25. Tarasov, V.E.: Geometric interpretation of fractional-order derivative. Fract. Calc. Appl. Anal. 19(5), 1200–1221 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Sun, H., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64, 213–231 (2018)

    MATH  Google Scholar 

  27. Jmal, A., Naifar, O., Ben Makhlouf, A., Derbel, N., Hammami, M.A.: A brief overview on fractional order systems in control theory. Fractional Order Systems-Control Theory and Applications pp. 29–47 (2022)

  28. Arora, S., Mathur, T., Agarwal, S., Tiwari, K., Gupta, P.: Applications of fractional calculus in computer vision: a survey. Neurocomputing 489, 407–428 (2022)

    Google Scholar 

  29. Vu, T.N.L., Chuong, V.L., Truong, N.T.N., Jung, J.H.: Analytical design of fractional-order pi controller for parallel cascade control systems. Appl. Sci. 12(4), 2222 (2022)

    Google Scholar 

  30. Caponetto, R.: Fractional Order Systems: Modeling and Control Applications, vol. 72. World Scientific, Singapore (2010)

    Google Scholar 

  31. Sheng, H., Chen, Y., Qiu, T.: Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications. Springer Science & Business Media, Berlin/Heidelberg (2011)

    MATH  Google Scholar 

  32. Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer Science & Business Media, Berlin/Heidelberg (2011)

    Google Scholar 

  33. Povstenko, Y.: Fractional Thermoelasticity. Springer, Berlin (2015)

    MATH  Google Scholar 

  34. Baleanu, D., Machado, J.A.T., Luo, A.C.: Fractional Dynamics and Control. Springer Science & Business Media, Berlin/Heidelberg (2011)

    Google Scholar 

  35. Padula, F., Visioli, A., et al.: Advances in Robust Fractional Control. Springer, Berlin/Heidelberg (2015)

    MATH  Google Scholar 

  36. Shah, P., Agashe, S.: Review of fractional PID controller. Mechatronics 38, 29–41 (2016)

    Google Scholar 

  37. Kaczorek, T., Rogowski, K.: Fractional Linear Systems and Electrical Circuits. Springer, Berlin (2015)

    MATH  Google Scholar 

  38. Sabatier, J., Lanusse, P., Melchior, P., Oustaloup, A.: Fractional order differentiation and robust control design. Intell. Syst. Control Autom. Sci. Eng. 77, 13–18 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Chen, E., Xing, W., Wang, M., Ma, W., Chang, Y.: Study on chaos of nonlinear suspension system with fractional-order derivative under random excitation. Chaos Solitons Fractal 152, 111300 (2021)

    MathSciNet  MATH  Google Scholar 

  40. Zhang, H., Huang, J., He, S.: Fractional-order interval observer for multiagent nonlinear systems. Fractal Fract. 6(7), 355 (2022)

    Google Scholar 

  41. Khan, A., Khan, N.: A novel finite-time terminal observer of a fractional-order chaotic system with chaos entanglement function. Math. Methods Appl. Sci. 45(2), 640–656 (2022)

    MathSciNet  Google Scholar 

  42. Amiri, S., Keyanpour, M., Masoudi, M.: Observer-based output feedback control design for a fractional ode and a fractional pde cascaded system. ISA Transact. 128, 144–161 (2022)

    Google Scholar 

  43. Martínez-Guerra, R., Flores-Flores, J.P., Govea-Vargas, A.: A globally mittag-leffler bounded high-gain observer for systems with unknown dynamics and noisy measurements. ISA Transact. 128, 336–345 (2022)

    Google Scholar 

  44. Muñiz-Montero, C., García-Jiménez, L.V., Sánchez-Gaspariano, L.A., Sánchez-López, C., González-Díaz, V.R., Tlelo-Cuautle, E.: New alternatives for analog implementation of fractional-order integrators, differentiators and PID controllers based on integer-order integrators. Nonlinear Dyn. 90(1), 241–256 (2017)

    MathSciNet  Google Scholar 

  45. Mousavi, S.M.M., Ramezani, A.: A new sliding mode observer design for fault estimation in a class of nonlinear fractional-order systems based on the super-twisting algorithm. J. Control Autom. Electric. Syst. 32(6), 1531–1539 (2021)

    Google Scholar 

  46. Muñoz-Vázquez, A.J., Parra-Vega, V., Sánchez-Orta, A., Romero-Galván, G.: Finite-time disturbance observer via continuous fractional sliding modes. Trans. Inst. Measur. Control 40(14), 3953–3963 (2017)

    MATH  Google Scholar 

  47. Djeghali, N., Djennoune, S., Bettayeb, M., Ghanes, M., Barbot, J.P.: Observation and sliding mode observer for nonlinear fractional-order system with unknown input. ISA Trans. 63, 1–10 (2016)

    Google Scholar 

  48. Pashaei, S., Badamchizadeh, M.: A new fractional-order sliding mode controller via a nonlinear disturbance observer for a class of dynamical systems with mismatched disturbances. ISA Trans. 63, 39–48 (2016)

    Google Scholar 

  49. Li, J.F., Jahanshahi, H., Kacar, S., Chu, Y.M., Gómez-Aguilar, J., Alotaibi, N.D., Alharbi, K.H.: On the variable-order fractional memristor oscillator: data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control. Chaos Solitons Fractals 145, 110681 (2021)

    MathSciNet  MATH  Google Scholar 

  50. Yadav, V.K., Shukla, V.K., Das, S.: Exponential synchronization of fractional-order complex chaotic systems and its application. Chaos Solitons Fractals 147, 110937 (2021)

    MathSciNet  MATH  Google Scholar 

  51. He, Y., Fu, Y., Qiao, Z., Kang, Y.: Chaotic resonance in a fractional-order oscillator system with application to mechanical fault diagnosis. Chaos Solitons Fractal 142, 110536 (2021)

    MathSciNet  Google Scholar 

  52. Muñoz-Vázquez, A.J., Parra-Vega, V., Sánchez-Orta, A., Martínez-Fuentes, O.: High-gain fractional disturbance observer control of uncertain dynamical systems. J. Franklin Inst. 358(9), 4793–4806 (2021)

    MathSciNet  MATH  Google Scholar 

  53. Djennoune, S., Bettayeb, M., Al Saggaf, U.M.: Impulsive observer with predetermined finite convergence time for synchronization of fractional-order chaotic systems based on takagi-sugeno fuzzy model. Nonlinear Dyn. 98(2), 1331–1354 (2019)

    Google Scholar 

  54. Sakthivel, R., Sakthivel, R., Kwon, O.M., Selvaraj, P., Anthoni, S.M.: Observer-based robust synchronization of fractional-order multi-weighted complex dynamical networks. Nonlinear Dyn. 98(2), 1231–1246 (2019)

    Google Scholar 

  55. Beale, S., Shafai, B.: Robust control system design with a proportional integral observer. Int. J. Control 50(1), 97–111 (1989)

    MathSciNet  MATH  Google Scholar 

  56. Söffker, D., Yu, T.J., Müller, P.C.: State estimation of dynamical systems with nonlinearities by using proportional-integral observer. Int. J. Syst. Sci. 26(9), 1571–1582 (1995)

    MATH  Google Scholar 

  57. Bakhshande, F., Söffker, D.: Proportional-integral-observer: a brief survey with special attention to the actual methods using acc benchmark. IFAC-PapersOnLine 48(1), 532–537 (2015)

    Google Scholar 

  58. Aguilar-Ibañez, C., García-Canseco, E., Martínez-García, R., Martínez-García, J.C., Suarez-Castañon, M.S.: An I &I-based observer to solve the output-feedback synchronization problem for a class of chaotic systems. Asian J. Control 20(4), 1491–1503 (2018)

    MathSciNet  MATH  Google Scholar 

  59. Koenig, D., Mammar, S.: Design of proportional-integral observer for unknown input descriptor systems. IEEE Trans. Autom. Control 47(12), 2057–2062 (2002)

    MathSciNet  MATH  Google Scholar 

  60. Wang, J., Wang, F., Wang, G., Li, S., Yu, L.: Generalized proportional integral observer based robust finite control set predictive current control for induction motor systems with time-varying disturbances. IEEE Transact. Ind. Inform. 14(9), 4159–4168 (2018)

    Google Scholar 

  61. Do, M.H., Koenig, D., Theilliol, D.: Robust h\(\infty \) proportional-integral observer-based controller for uncertain LPV system. J. Frankl. Inst. 357(4), 2099–2130 (2020)

    MathSciNet  MATH  Google Scholar 

  62. Lu, J., Savaghebi, M., Ghias, A.M., Hou, X., Guerrero, J.M.: A reduced-order generalized proportional integral observer-based resonant super-twisting sliding mode control for grid-connected power converters. IEEE Transact. Ind. Electron. 68(7), 5897–5908 (2020)

    Google Scholar 

  63. Cruz-Victoria, J.C., Martínez-Guerra, R., Pérez-Pinacho, C.A., Gómez-Cortés, G.C.: Synchronization of nonlinear fractional order systems by means of PIr\(\alpha \) reduced order observer. Appl. Math. Comput. 262, 224–231 (2015)

    MathSciNet  MATH  Google Scholar 

  64. Meléndez-Vázquez, F., Martínez-Guerra, R.: Reduced-order fractional integral observer for synchronisation and anti-synchronisation of fractional-order chaotic systems. IET Control Theory Appl. 12(12), 1755–1762 (2018)

    MathSciNet  Google Scholar 

  65. Doye, I.N., Salama, K.N., Laleg-Kirati, T.M.: Robust fractional-order proportional-integral observer for synchronization of chaotic fractional-order systems. IEEE/CAA J. Autom. Sin. 6(1), 268–277 (2018)

    MathSciNet  Google Scholar 

  66. Komachali, F.P., Shafiee, M., Darouach, M.: Design of unknown input fractional order proportional-integral observer for fractional order singular systems with application to actuator fault diagnosis. IET Control Theory Appl. 13(14), 2163–2172 (2019)

  67. Trejo-Zúñiga, I., Delfín-Prieto, S.M., Martínez-Guerra, R.: Fractional controller based on a robust pi \(\alpha \) observer for uncertain fractional systems. Int. J. Syst. Sci. 50(4), 829–842 (2019)

    MathSciNet  MATH  Google Scholar 

  68. Martínez-Fuentes, O., Martínez-Guerra, R.: A novel Mittag-Leffler stable estimator for nonlinear fractional-order systems: a linear quadratic regulator approach. Nonlinear Dyn. 94(3), 1973–1986 (2018)

    MATH  Google Scholar 

  69. Martínez-Fuentes, O., Martínez-Guerra, R.: A high-gain observer with Mittag-Leffler rate of convergence for a class of nonlinear fractional-order systems. Commun. Nonlinear Sci. Numer. Simul. 79, 104909 (2019)

    MathSciNet  MATH  Google Scholar 

  70. Samko, S.G., Kilbas, A.A., Marichev, O.: Fract. Integr. Deriv. Theory Appl. Gordon and Breach Sci. Publishers, Singapore (1993)

    Google Scholar 

  71. Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer-Verlag, Berlin (2010)

    MATH  Google Scholar 

  72. Mittag-Leffler, M.G.: Sur la nouvelle fonction \( {E}_{\alpha } (x) \). C. R. Acad. Sci. Paris 137(2), 554–558 (1903)

    MATH  Google Scholar 

  73. Haubold, H.J., Mathai, A.M., Saxena, R.K.: Mittag-Leffler functions and their applications. J. Appl. Math. 2011, 1–51 (2011)

    MathSciNet  MATH  Google Scholar 

  74. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions, Related Topics and Applications. Springer-Verlag, Berlin (2014)

    MATH  Google Scholar 

  75. Li, Y., Chen, Y.Q., Podlubny, I.: Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45(8), 1965–1969 (2009)

    MathSciNet  MATH  Google Scholar 

  76. Sene, N.: Fractional input stability and its application to neural network. Discret. Contin. Dyn. Syst.-S 13(3), 853 (2020)

    MathSciNet  MATH  Google Scholar 

  77. Sene, N.: Mittag-leffler input stability of fractional differential equations and its applications. Discret. Contin. Dyn. Syst. S 13(3), 867 (2020)

    MathSciNet  MATH  Google Scholar 

  78. Van Der Schaft, A.: On nonlinear observers. IEEE Trans. Autom. Control 30(12), 1254–1256 (1985)

    MATH  Google Scholar 

  79. Muñoz-Vázquez, A.J., Parra-Vega, V., Sánchez-Orta, A.: Non-smooth convex lyapunov functions for stability analysis of fractional-order systems. Transact. Inst. Measur. Control 41(6), 1627–1639 (2019)

    MATH  Google Scholar 

  80. N’Doye, I., Kirati, T.M.L.: Stability and trajectories analysis of a fractional generalization of simple pendulum dynamic equation. In: 2019 18th European Control Conference (ECC), pp. 3854–3860. IEEE (2019)

  81. Baleanu, D., Trujillo, J.J.: On exact solutions of a class of fractional euler-lagrange equations. Nonlinear Dyn. 52(4), 331–335 (2008)

    MathSciNet  MATH  Google Scholar 

  82. Khalil, H.K.: Nonlinear Control, vol. 406. Pearson, New York (2015)

  83. Yang, L., Shami, A.: On hyperparameter optimization of machine learning algorithms: theory and practice. Neurocomputing 415, 295–316 (2020)

    Google Scholar 

  84. Sun, S., Cao, Z., Zhu, H., Zhao, J.: A survey of optimization methods from a machine learning perspective. IEEE Transact. Cybern. 50(8), 3668–3681 (2019)

    Google Scholar 

  85. Tsagkatakis, G., Aidini, A., Fotiadou, K., Giannopoulos, M., Pentari, A., Tsakalides, P.: Survey of deep-learning approaches for remote sensing observation enhancement. Sensors 19(18), 3929 (2019)

    Google Scholar 

  86. Viera-Martin, E., Gómez-Aguilar, J., Solís-Pérez, J., Hernández-Pérez, J., Escobar-Jiménez, R.: Artificial neural networks: a practical review of applications involving fractional calculus. Eur. Phys. J. Spec. Top. 231(10), 2059–2095 (2022)

  87. González-Zapata, A.M., Tlelo-Cuautle, E., Cruz-Vega, I.: On the optimization of machine learning techniques for chaotic time series prediction. Electronics 11(21), 3612 (2022)

    Google Scholar 

Download references

Acknowledgements

Oscar Martínez-Fuentes acknowledges the support provided by the Mexico’s National Council of Science and Technology (CONACyT) under the Postdoctoral Fellowship Program 2022. Guillermo Fernández-Anaya acknowledges the support provided by División de Investigación y Posgrado de la Universidad Iberoamericana.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Martínez-Fuentes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

As extra information to help the reader, the structures associated with the observers used for each model in the case studies presented in this article are presented below.

1.1 Simple pendulum

The observer structure (33) for the simple pendulum (46), varying the parameter \(1\le \rho \le 5\) takes the following forms:

  • (i) \(\rho =1\)

    $$\begin{aligned} \varSigma _{\hat{{\text {P}}}}=\left\{ \begin{aligned} {_0^{C}}{\mathcal {D}}_t^\alpha \hat{x}_1&=\hat{x}_2-k_{I_1}z_1-k_{P_{1}}\left( \hat{x}_1-y_{{\text {P}}}\right) \\ {_0^{C}}{\mathcal {D}}_t^\alpha \hat{x}_2&=-\frac{g}{L} \sin \hat{x}_1-k_{I_2}z_1\\&\qquad -k_{P_{2}}\left( \hat{x}_1-y_{{\text {P}}}\right) \\ {_0^{C}}{\mathcal {D}}_t^\alpha z_1&=\hat{x}_1-y_{{\text {P}}}-k_{z_1} z_1 \end{aligned} \right. \end{aligned}$$
    (54)
  • (ii) \(\rho =2\)

    $$\begin{aligned} \varSigma _{\hat{{\text {P}}}}=\left\{ \begin{aligned} {_0^{C}}{\mathcal {D}}_t^\alpha \hat{x}_1&=\hat{x}_2-k_{I_1}z_1-k_{P_{1}}\left( \hat{x}_1-y_{{\text {P}}}\right) \\ {_0^{C}}{\mathcal {D}}_t^\alpha \hat{x}_2&=-\frac{g}{L} \sin \hat{x}_1-k_{I_2}z_1\\&\qquad -k_{P_{2}}\left( \hat{x}_1-y_{{\text {P}}}\right) \\ {_0^{C}}{\mathcal {D}}_t^\alpha z_1&=z_2-k_{z_1} z_1 \\ {_0^{C}}{\mathcal {D}}_t^\alpha z_2&=\hat{x}_1-y_{{\text {P}}}-k_{z_2} z_1 \end{aligned} \right. \end{aligned}$$
    (55)
  • (iii) \(\rho =3\)

    $$\begin{aligned} \varSigma _{\hat{{\text {P}}}}=\left\{ \begin{aligned} {_0^{C}}{\mathcal {D}}_t^\alpha \hat{x}_1&=\hat{x}_2-k_{I_1}z_1-k_{P_{1}}\left( \hat{x}_1-y_{{\text {P}}}\right) \\ {_0^{C}}{\mathcal {D}}_t^\alpha \hat{x}_2&=-\frac{g}{L} \sin \hat{x}_1-k_{I_2}z_1\\&\qquad -k_{P_{2}}\left( \hat{x}_1-y_{{\text {P}}}\right) \\ {_0^{C}}{\mathcal {D}}_t^\alpha z_1&=z_2-k_{z_1} z_1 \\ {_0^{C}}{\mathcal {D}}_t^\alpha z_2&=z_3-k_{z_2} z_1 \\ {_0^{C}}{\mathcal {D}}_t^\alpha z_3&=\hat{x}_1-y_{{\text {P}}}-k_{z_3} z_1 \end{aligned} \right. \end{aligned}$$
    (56)
  • (iv) \(\rho =4\)

    $$\begin{aligned} \varSigma _{\hat{{\text {P}}}}=\left\{ \begin{aligned} {_0^{C}}{\mathcal {D}}_t^\alpha \hat{x}_1&=\hat{x}_2-k_{I_1}z_1-k_{P_{1}}\left( \hat{x}_1-y_{{\text {P}}}\right) \\ {_0^{C}}{\mathcal {D}}_t^\alpha \hat{x}_2&=-\frac{g}{L} \sin \hat{x}_1-k_{I_2}z_1\\&\qquad -k_{P_{2}}\left( \hat{x}_1-y_{{\text {P}}}\right) \\ {_0^{C}}{\mathcal {D}}_t^\alpha z_1&=z_2-k_{z_1} z_1 \\ {_0^{C}}{\mathcal {D}}_t^\alpha z_2&=z_3-k_{z_2} z_1 \\ {_0^{C}}{\mathcal {D}}_t^\alpha z_3&=z_4-k_{z_3} z_1 \\ {_0^{C}}{\mathcal {D}}_t^\alpha z_4&=\hat{x}_1-y_{{\text {P}}}-k_{z_4} z_1 \end{aligned} \right. \end{aligned}$$
    (57)
  • (v) \(\rho =5\)

    $$\begin{aligned} \varSigma _{\hat{{\text {P}}}}=\left\{ \begin{aligned} {_0^{C}}{\mathcal {D}}_t^\alpha \hat{x}_1&=\hat{x}_2-k_{I_1}z_1-k_{P_{1}}\left( \hat{x}_1-y_{{\text {P}}}\right) \\ {_0^{C}}{\mathcal {D}}_t^\alpha \hat{x}_2&=-\frac{g}{L} \sin \hat{x}_1-k_{I_2}z_1\\&\qquad -k_{P_{2}}\left( \hat{x}_1-y_{{\text {P}}}\right) \\ {_0^{C}}{\mathcal {D}}_t^\alpha z_1&=z_2-k_{z_1} z_1 \\ {_0^{C}}{\mathcal {D}}_t^\alpha z_2&=z_3-k_{z_2} z_1 \\ {_0^{C}}{\mathcal {D}}_t^\alpha z_3&=z_4-k_{z_3} z_1 \\ {_0^{C}}{\mathcal {D}}_t^\alpha z_4&=z_5-k_{z_4} z_1 \\ {_0^{C}}{\mathcal {D}}_t^\alpha z_5&=\hat{x}_1-y_{{\text {P}}}-k_{z_5} z_1 \end{aligned} \right. \end{aligned}$$
    (58)

1.2 The flexible joint mechanism

On the other hand, doing similar calculations the observer structure (33) for the robot with flexible joint (49), varying the parameter \(1\le \rho \le 5\) takes the following forms:

  • (i) \(\rho =1\)

    $$\begin{aligned} \varSigma _{\hat{{\text {P}}}}=\left\{ \begin{aligned} {_0^{C}}{\mathcal {D}}_t^\alpha \hat{x}_1&=\hat{x}_2-k_{I_1}z_1-k_{P_{1}}\left( \hat{x}_1-y_{{\text {R}}}\right) \\ {_0^{C}}{\mathcal {D}}_t^\alpha \hat{x}_2&=\hat{x}_3-9.81\sin \hat{x}_1-0.1\hat{x}_2-\hat{x}_1\\&\qquad -k_{I_2}z_1-k_{P_{2}}\left( \hat{x}_1-y_{{\text {R}}}\right) \\ {_0^{C}}{\mathcal {D}}_t^\alpha \hat{x}_3&=\hat{x}_4-k_{I_3}z_1-k_{P_{3}}\left( \hat{x}_1-y_{{\text {R}}}\right) \\ {_0^{C}}{\mathcal {D}}_t^\alpha \hat{x}_4&=5\hat{x}_1-5\hat{x}_3-\hat{x}_4+5u\\&\qquad -k_{I_4}z_1-k_{P_{4}}\left( \hat{x}_1-y_{{\text {R}}}\right) \\ {_0^{C}}{\mathcal {D}}_t^\alpha z_1&=\hat{x}_1-y_{{\text {R}}}-k_{z_1} z_1 \end{aligned} \right. \end{aligned}$$
    (59)
  • (ii) \(\rho =2\)

    $$\begin{aligned} \varSigma _{\hat{{\text {P}}}}=\left\{ \begin{aligned} {_0^{C}}{\mathcal {D}}_t^\alpha \hat{x}_1&=\hat{x}_2-k_{I_1}z_1-k_{P_{1}}\left( \hat{x}_1-y_{{\text {R}}}\right) \\ {_0^{C}}{\mathcal {D}}_t^\alpha \hat{x}_2&=\hat{x}_3-9.81\sin \hat{x}_1-0.1\hat{x}_2-\hat{x}_1\\&\qquad -k_{I_2}z_1-k_{P_{2}}\left( \hat{x}_1-y_{{\text {R}}}\right) \\ {_0^{C}}{\mathcal {D}}_t^\alpha \hat{x}_3&=\hat{x}_4-k_{I_3}z_1-k_{P_{3}}\left( \hat{x}_1-y_{{\text {R}}}\right) \\ {_0^{C}}{\mathcal {D}}_t^\alpha \hat{x}_4&=5\hat{x}_1-5\hat{x}_3-\hat{x}_4+5u\\&\qquad -k_{I_4}z_1-k_{P_{4}}\left( \hat{x}_1-y_{{\text {R}}}\right) \\ {_0^{C}}{\mathcal {D}}_t^\alpha z_1&=z_2-k_{z_1} z_1 \\ {_0^{C}}{\mathcal {D}}_t^\alpha z_2&=\hat{x}_1-y_{{\text {R}}}-k_{z_2} z_1 \end{aligned} \right. \end{aligned}$$
    (60)
  • (iii) \(\rho =3\)

    $$\begin{aligned} \varSigma _{\hat{{\text {P}}}}=\left\{ \begin{aligned} {_0^{C}}{\mathcal {D}}_t^\alpha \hat{x}_1&=\hat{x}_2-k_{I_1}z_1-k_{P_{1}}\left( \hat{x}_1-y_{{\text {R}}}\right) \\ {_0^{C}}{\mathcal {D}}_t^\alpha \hat{x}_2&=\hat{x}_3-9.81\sin \hat{x}_1-0.1\hat{x}_2-\hat{x}_1\\&\qquad -k_{I_2}z_1-k_{P_{2}}\left( \hat{x}_1-y_{{\text {R}}}\right) \\ {_0^{C}}{\mathcal {D}}_t^\alpha \hat{x}_3&=\hat{x}_4-k_{I_3}z_1-k_{P_{3}}\left( \hat{x}_1-y_{{\text {R}}}\right) \\ {_0^{C}}{\mathcal {D}}_t^\alpha \hat{x}_4&=5\hat{x}_1-5\hat{x}_3-\hat{x}_4+5u\\&\qquad -k_{I_4}z_1-k_{P_{4}}\left( \hat{x}_1-y_{{\text {R}}}\right) \\ {_0^{C}}{\mathcal {D}}_t^\alpha z_1&=z_2-k_{z_1} z_1 \\ {_0^{C}}{\mathcal {D}}_t^\alpha z_2&=z_3-k_{z_2} z_1 \\ {_0^{C}}{\mathcal {D}}_t^\alpha z_3&=\hat{x}_1-y_{{\text {R}}}-k_{z_3} z_1 \end{aligned} \right. \end{aligned}$$
    (61)
  • (iv) \(\rho =4\)

    $$\begin{aligned} \varSigma _{\hat{{\text {P}}}}=\left\{ \begin{aligned} {_0^{C}}{\mathcal {D}}_t^\alpha \hat{x}_1&=\hat{x}_2-k_{I_1}z_1-k_{P_{1}}\left( \hat{x}_1-y_{{\text {R}}}\right) \\ {_0^{C}}{\mathcal {D}}_t^\alpha \hat{x}_2&=\hat{x}_3-9.81\sin \hat{x}_1-0.1\hat{x}_2-\hat{x}_1\\&\qquad -k_{I_2}z_1-k_{P_{2}}\left( \hat{x}_1-y_{{\text {R}}}\right) \\ {_0^{C}}{\mathcal {D}}_t^\alpha \hat{x}_3&=\hat{x}_4-k_{I_3}z_1-k_{P_{3}}\left( \hat{x}_1-y_{{\text {R}}}\right) \\ {_0^{C}}{\mathcal {D}}_t^\alpha \hat{x}_4&=5\hat{x}_1-5\hat{x}_3-\hat{x}_4+5u\\&\qquad -k_{I_4}z_1-k_{P_{4}}\left( \hat{x}_1-y_{{\text {R}}}\right) \\ {_0^{C}}{\mathcal {D}}_t^\alpha z_1&=z_2-k_{z_1} z_1 \\ {_0^{C}}{\mathcal {D}}_t^\alpha z_2&=z_3-k_{z_2} z_1 \\ {_0^{C}}{\mathcal {D}}_t^\alpha z_3&=z_4-k_{z_3} z_1 \\ {_0^{C}}{\mathcal {D}}_t^\alpha z_4&=\hat{x}_1-y_{{\text {R}}}-k_{z_4} z_1 \end{aligned} \right. \end{aligned}$$
    (62)
  • (v) \(\rho =5\)

    $$\begin{aligned} \varSigma _{\hat{{\text {P}}}}=\left\{ \begin{aligned} {_0^{C}}{\mathcal {D}}_t^\alpha \hat{x}_1&=\hat{x}_2-k_{I_1}z_1-k_{P_{1}}\left( \hat{x}_1-y_{{\text {R}}}\right) \\ {_0^{C}}{\mathcal {D}}_t^\alpha \hat{x}_2&=\hat{x}_3-9.81\sin \hat{x}_1-0.1\hat{x}_2-\hat{x}_1\\&\qquad -k_{I_2}z_1-k_{P_{2}}\left( \hat{x}_1-y_{{\text {R}}}\right) \\ {_0^{C}}{\mathcal {D}}_t^\alpha \hat{x}_3&=\hat{x}_4-k_{I_3}z_1-k_{P_{3}}\left( \hat{x}_1-y_{{\text {R}}}\right) \\ {_0^{C}}{\mathcal {D}}_t^\alpha \hat{x}_4&=5\hat{x}_1-5\hat{x}_3-\hat{x}_4+5u\\&\qquad -k_{I_4}z_1-k_{P_{4}}\left( \hat{x}_1-y_{{\text {R}}}\right) \\ {_0^{C}}{\mathcal {D}}_t^\alpha z_1&=z_2-k_{z_1} z_1 \\ {_0^{C}}{\mathcal {D}}_t^\alpha z_2&=z_3-k_{z_2} z_1 \\ {_0^{C}}{\mathcal {D}}_t^\alpha z_3&=z_4-k_{z_3} z_1 \\ {_0^{C}}{\mathcal {D}}_t^\alpha z_4&=z_5-k_{z_4} z_1 \\ {_0^{C}}{\mathcal {D}}_t^\alpha z_5&=\hat{x}_1-y_{{\text {R}}}-k_{z_5} z_1 \end{aligned} \right. \end{aligned}$$
    (63)

1.3 The inverted pendulum

The observer structure (33) for the inverted pendulum (50), varying the parameter \(1\le \rho \le 2\), has the following forms:

  • (i) \(\rho =1\)

    $$\begin{aligned} \varSigma _{\hat{{\text {P}}}}=\left\{ \begin{aligned} {_0^{C}}{\mathcal {D}}_t^\alpha \hat{x}_1&=\hat{x}_2-k_{I_1}z_1-k_{P_{1}}\left( \hat{x}_1-y_{{\text {IP}}}\right) \\ {_0^{C}}{\mathcal {D}}_t^\alpha \hat{x}_2&=\hat{A} \left( \sin \hat{x}_1+u\cos \hat{x}_1\right) -k_{I_2}z_1\\&\qquad -k_{P_{2}}\left( \hat{x}_1-y_{{\text {IP}}}\right) \\ {_0^{C}}{\mathcal {D}}_t^\alpha z_1&=\hat{x}_1-y_{{\text {IP}}}-k_{z_1} z_1 \end{aligned} \right. \end{aligned}$$
    (64)
  • (ii) \(\rho =2\)

    $$\begin{aligned} \varSigma _{\hat{{\text {P}}}}=\left\{ \begin{aligned} {_0^{C}}{\mathcal {D}}_t^\alpha \hat{x}_1&=\hat{x}_2-k_{I_1}z_1-k_{P_{1}}\left( \hat{x}_1-y_{{\text {IP}}}\right) \\ {_0^{C}}{\mathcal {D}}_t^\alpha \hat{x}_2&=\hat{A}\left( \sin \hat{x}_1+u\cos \hat{x}_1\right) -k_{I_2}z_1\\&\qquad -k_{P_{2}}\left( \hat{x}_1-y_{{\text {IP}}}\right) \\ {_0^{C}}{\mathcal {D}}_t^\alpha z_1&=z_2-k_{z_1} z_1 \\ {_0^{C}}{\mathcal {D}}_t^\alpha z_2&=\hat{x}_1-y_{{\text {IP}}}-k_{z_2} z_1 \end{aligned} \right. \end{aligned}$$
    (65)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Fuentes, O., Muñoz-Vázquez, A.J., Fernández-Anaya, G. et al. State estimation in mechanical systems of fractional-order based on a family of proportional \({\varvec{\rho }}\)-integral observers. Nonlinear Dyn 111, 19879–19899 (2023). https://doi.org/10.1007/s11071-023-08919-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08919-4

Keywords

Navigation