Skip to main content
Log in

Exponential stabilization of aero-engine T-S fuzzy system with decentralized dynamic event-triggered mechanism

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a decentralized dynamic event-triggered control method of aero-engine T-S fuzzy system, aiming to achieve both exponential stabilization of aero-engine networked control systems (NCSs) and reduction in network communication loads. Firstly, a novel decentralized dynamic event-triggered mechanism (DETM) is developed to regulate data transmissions in each communication channel independently. The closed-loop model is then established, by considering network-induced delays, dynamic quantization effects, external disturbance, and parameter perturbation. Stability criteria are derived using the Lyapunov–Krasovskii method, and a collaborative design method based on linear matrix inequalities (LMIs) is proposed for controller, quantizers, and DETM. Lastly, a parameter tuning method based on the iL-SHADE algorithm is proposed for better feasibility of the obtained LMIs. Simulation results show that the proposed method has good robustness to multi-uncertainty conditions and can effectively reduce communication resource wastage while ensuring well control performance across a wide range of flight envelopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Li, R., Nguang, S.K., Guo, Y., et al.: Networked control system design for turbofan aeroengines with aging and deterioration. Complexity 2018, 1–13 (2018)

    MATH  Google Scholar 

  2. Zhou, B., Xie, S., Wang, F., et al.: Multi-step predictive compensated intelligent control for aero-engine wireless networked system with random scheduling. J. Franklin Inst. 357(10), 6154–6174 (2020)

    MathSciNet  MATH  Google Scholar 

  3. Zhang, X., Han, Q., Ge, X., et al.: Networked control systems: a survey of trends and techniques. IEEE/CAA Journal of Automatica Sinica 7(01), 1–17 (2019)

    MathSciNet  Google Scholar 

  4. Xu, Z., Li, X., Stojanovic, V.: Exponential stability of nonlinear state-dependent delayed impulsive systems with applications. Nonlinear Anal. Hybrid Syst. 42, 101088 (2021)

    MathSciNet  MATH  Google Scholar 

  5. Wei, T., Li, X., Stojanovic, V.: Input-to-state stability of impulsive reaction–diffusion neural networks with infinite distributed delays. Nonlinear Dyn. 103(2), 1733–1755 (2021)

    MATH  Google Scholar 

  6. Belapurkar, R.K. and Yedavalli, R.K. Study of model-based fault detection of distributed aircraft engine control systems with transmission delays. In: 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. 2011. San Diego, California.

  7. Zhang, L., Xie, S., Yu, Z., et al.: Aero-engine DCS fault-tolerant control with Markov time delay based on augmented adaptive sliding mode observer. Asian J. Contr. 22(2), 788–802 (2018)

    MathSciNet  Google Scholar 

  8. Wang, W., Xie, S., Peng, J., et al.: Dual-terminal event-triggered dynamic output feedback H∞ control for aero engine networked control systems with quantization. Int. J. Robust Nonlinear Control 33(2), 697–719 (2023)

    MathSciNet  Google Scholar 

  9. Wang, H., Wang, D.: Turbofan aero-engine full flight envelope control using H∞ loop-shaping control technique. Int. J. Adv. Mechatr. Syst. 3(1), 65–76 (2011)

    Google Scholar 

  10. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)

    MATH  Google Scholar 

  11. Li, R., Guo, Y., Nguang, S.K., et al.: Takagi-Sugeno fuzzy model identification for turbofan aero-engines with guaranteed stability. Chin. J. Aeronaut. 31(6), 1206–1214 (2018)

    Google Scholar 

  12. Wang, H., Xie, S., Wang, W., et al.: Investigation of unmeasured parameters estimation for distributed control systems. Complexity 2020, 1–15 (2020)

    MATH  Google Scholar 

  13. Song, P., Yang, Q., Wen, G., et al.: Fuzzy H∞ robust control for T-S aero-engine systems with network-induced factors under round-robin-like protocol. Aerosp. Sci. Technol. 137, 108258 (2023)

    Google Scholar 

  14. Song, X., Sun, P., Song, S., et al.: Event-driven NN adaptive fixed-time control for nonlinear systems with guaranteed performance. J. Franklin Inst. 359(9), 4138–4159 (2022)

    MathSciNet  MATH  Google Scholar 

  15. Zhang, K., Zhao, T., Dian, S.: Dynamic output feedback control for nonlinear networked control systems with a two-terminal event-triggered mechanism. Nonlinear Dyn. 100(3), 2537–2555 (2020)

    MATH  Google Scholar 

  16. Kanakalakshmi, S., Sakthivel, R., Karthick, S.A., et al.: Finite-time decentralized event-triggering non-fragile control for fuzzy neural networks with cyber-attack and energy constraints. Eur. J. Control. 57, 135–146 (2021)

    MathSciNet  MATH  Google Scholar 

  17. Ge, X., Han, Q., Ding, L., et al.: Dynamic event-triggered distributed coordination control and its applications: a survey of trends and techniques. IEEE Trans. Syst. Man Cyber. Syst. 50(9), 3112–3125 (2020)

    Google Scholar 

  18. Ahmad, I., Ge, X., Han, Q.: Decentralized dynamic event-triggered communication and active suspension control of in-wheel motor driven electric vehicles with dynamic damping. IEEE/CAA J. Autom. Sin. 8(5), 971 (2021)

    MathSciNet  Google Scholar 

  19. Liberzon, D.: Hybrid feedback stabilization of systems with quantized signals. Automatica 39(9), 1543–1554 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Csernak, G., Gyebroszki, G., Stepan, G.: Multi-baker map as a model of digital PD control. Int. J. Bifurcat. Chaos 26(02), 1650025 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Hu, S., Yue, D.: Event-triggered control design of linear networked systems with quantizations. ISA Trans. 51(1), 153–162 (2012)

    Google Scholar 

  22. Tan, Y., Xiong, M., Du, D., et al.: Observer-based robust control for fractional-order nonlinear uncertain systems with input saturation and measurement quantization. Nonlinear Anal. Hybrid Syst 34, 45–57 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Wang, J., Zhou, M., Liu, C.: Stochastic stability of Markovian jump linear systems over networks with random quantization density and time delay. Phys. A 509, 1128–1139 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Chen, G., Chen, Y., Zeng, H.: Event-triggered H∞ filter design for sampled-data systems with quantization. ISA Trans. 101, 170–176 (2020)

    Google Scholar 

  25. Chang, X., Xiong, J., Li, Z., et al.: Quantized static output feedback control for discrete-time systems. IEEE Trans. Industr. Inf. 14(8), 3426–3435 (2018)

    Google Scholar 

  26. Liu, K., Fridman, E., Johansson, K.H.: Dynamic quantization of uncertain linear networked control systems. Automatica 59, 248–255 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Li, B., Wang, Z., Han, Q., et al.: Input-to-state stabilization in probability for nonlinear stochastic systems under quantization effects and communication protocols. IEEE Trans. Cybern. 49(9), 3242–3254 (2019)

    Google Scholar 

  28. Li, Z., Xiong, J.: Event-triggered fuzzy filtering for nonlinear networked systems with dynamic quantization and stochastic cyber attacks. ISA Trans. 121, 53–62 (2022)

    Google Scholar 

  29. Wang, Y., Xia, Y., Ahn, C.K., et al.: Exponential stabilization of takagi-sugeno fuzzy systems with aperiodic sampling: an aperiodic adaptive event-triggered method. IEEE Trans. Syst. Man Cybern. Syst. 49(2), 444–454 (2019)

    Google Scholar 

  30. Qi, Y., Tang, Y., Ke, Z., et al.: Dual-terminal decentralized event-triggered control for switched systems with cyber attacks and quantization. ISA Trans. 110, 15–27 (2021)

    Google Scholar 

  31. Yang, H., Li, P., Xia, Y., et al.: H∞ static output feedback for low-frequency networked control systems with a decentralized event-triggered scheme. IEEE Trans. Cybern. 51(8), 4227–4236 (2021)

    Google Scholar 

  32. Brest, J., Maucec, M.S. and Boskovic, B. iL-SHADE improved L-SHADE algorithm for single objective real-parameter optimization. In: 2016 IEEE Congress on Evolutionary Computation 2016.

  33. Xu, W., Huang, J., Qin, J., et al.: Limit protection design in turbofan engine acceleration control based on scheduling command governor. Chin. J. Aeronaut. 34(10), 67–80 (2021)

    Google Scholar 

  34. Sheng, H., Zhang, T., Jiang, W.: Full-range mathematical modeling of turboshaft engine in aerospace. Int. J. Turbo Jet Eng. 33(4), 309 (2016)

    Google Scholar 

  35. Liu, X., Luo, C., Xiong, L.: Compensators design for bumpless switching in aero-engine multi-loop control system. Asian J. Contr. 24(5), 2665–2678 (2021)

    Google Scholar 

  36. Imani, A., Montazeri-Gh, M.: A multi-loop switching controller for aircraft gas turbine engine with stability proof. Int. J. Control Autom. Syst. 17(6), 1359–1368 (2019)

    Google Scholar 

  37. Zhang, J., Peng, C., Du, D., et al.: Adaptive event-triggered communication scheme for networked control systems with randomly occurring nonlinearities and uncertainties. Neurocomputing 174, 475–482 (2016)

    Google Scholar 

  38. Hu, S., Yue, D., Cheng, Z., et al.: Co-design of dynamic event-triggered communication scheme and resilient observer-based control under aperiodic DoS attacks. IEEE Trans. Cybernet. 51(9), 4591–4601 (2021)

    Google Scholar 

  39. Sun, X., Yang, D., Zong, G.: Annular finite-time H∞ control of switched fuzzy systems: a switching dynamic event-triggered control approach. Nonlinear Anal. Hybrid Syst. 41, 101050 (2021)

    MathSciNet  MATH  Google Scholar 

  40. Jiang, X., Han, Q., Liu, S., et al.: A new H∞ stabilization criterion for networked control systems. IEEE Trans. Autom. Control 53(4), 1025–1032 (2008)

    MathSciNet  MATH  Google Scholar 

  41. Kim, J.-H.: Further improvement of Jensen inequality and application to stability of time-delayed systems. Automatica 64, 121–125 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Song, P., Yang, Q., Wen, G., et al.: Observer-based output feedback control for networked systems with dual-channel event-triggered sampling and quantization. J. Franklin Inst. 359(14), 7365–7392 (2022)

    MathSciNet  MATH  Google Scholar 

  43. Choi, T.J., Ahn, C.W.: An improved LSHADE-RSP algorithm with the Cauchy perturbation: iLSHADE-RSP. Knowl Based Syst. 215, 106628 (2021)

    Google Scholar 

  44. Zhou, B., Xie, S., Hui, J.: H-infinity control for T-S aero-engine wireless networked system with scheduling. IEEE Access 7, 115662–115672 (2019)

    Google Scholar 

  45. Park, P., Ko, J.W., Jeong, C.: Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47(1), 235–238 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Major Science and Technology Project of China (Grant Numbers [J2019-V-0003-0094]), and the Natural Science Basic Research Program of Shaanxi (Grant Numbers [2021JQ-359]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifen Zhang.

Ethics declarations

Conflicts of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Proof of Theorem 1

Choose the following Lyapunov–Krasovskii function as

$$ V\left( t \right) = \sum\limits_{l = 1}^{4} {V_{l} \left( t \right)} $$
(30)

where \(V_{1} \left( t \right) = {\varvec{x}}^{T} \left( t \right){\varvec{Px}}\left( t \right)\) with \({\varvec{P}} > 0\), \(V_{2} \left( t \right) = \int_{{t - \tau_{{\text{M}}} }}^{t} {e^{{2\lambda \left( {s - t} \right)}} {\varvec{x}}^{T} \left( s \right){\varvec{Qx}}\left( s \right)ds}\) with \({\varvec{Q}} > 0\), \(V_{3} \left( t \right) = \int_{{ - \tau_{{\text{M}}} }}^{0} {\int_{t + s}^{t} {e^{{2\lambda \left( {v - t} \right)}} {\dot{\varvec{x}}}^{T} \left( v \right){\varvec{R}}{\dot{\varvec{x}}}\left( v \right)dv} ds}\) with \({\varvec{R}} > 0\), \(V_{4} \left( t \right) = \sum\limits_{i = 1}^{2} {\eta_{i} \left( t \right)}\).

This together with Lemma 1 yields

$$ \lambda_{\min } \left( {\varvec{P}} \right)\left\| {{\varvec{x}}\left( t \right)} \right\|^{2} + \sum\limits_{i = 1}^{2} {\eta_{0{\text{i}}} e^{{ - \left( {1 + \rho_{i} } \right)t}} } \le V\left( t \right) \le \lambda_{{\text{M}}} \left\| {{\varvec{x}}\left( t \right)} \right\|^{2} + \sum\limits_{i = 1}^{2} {\eta_{i} \left( t \right)} $$
(31)

where \(\lambda_{{\text{M}}} = \lambda_{\max } \left( {\varvec{P}} \right) + \tau_{{\text{M}}} \lambda_{\max } \left( {\varvec{Q}} \right) + \frac{1}{2}\tau_{{\text{M}}}^{2} \lambda_{\max } \left( {\varvec{R}} \right)\).

Calculating the derivative of \(V_{l} \left( t \right)\left( {l = 1,2,3,4} \right)\) along the trajectory of system (18) yields

$$ \dot{V}\left( t \right) + 2\lambda V\left( t \right) = \sum\limits_{l = 1}^{4} {\left[ {\dot{V}_{l} \left( t \right) + 2\lambda V_{l} \left( t \right)} \right]} $$
(32)
$$ \begin{aligned} &\dot{V}_{1} \left( t \right) + 2\lambda V_{1} \left( t \right) = 2{\varvec{x}}^{T} \left( t \right){\varvec{P}}{\dot{\varvec{x}}}\left( t \right) + 2\lambda {\varvec{x}}^{T} \left( t \right){\varvec{Px}}\left( t \right) \hfill \\ & = {{\boldsymbol{\xi}}}^{T} \left( t \right)\left[ {\sum\limits_{m = 1}^{r} {\sum\limits_{n = 1}^{r} {\mu_{m} \mu_{n} \left\{ {2{\varvec{e}}_{1}^{T} {\varvec{P}}{\boldsymbol{\varLambda}}_{mn} } \right\}} } + 2\lambda {\varvec{e}}_{1}^{T} {\varvec{Pe}}_{1} } \right]{{\boldsymbol{\xi}}}^{T} \left( t \right) \end{aligned} $$
$$ \begin{aligned} &\dot{V}_{1} \left( t \right) + 2\lambda V_{1} \left( t \right) = 2{\varvec{x}}^{T} \left( t \right){\varvec{P}}{\dot{\varvec{x}}}\left( t \right) + 2\lambda {\varvec{x}}^{T} \left( t \right){\varvec{Px}}\left( t \right) \hfill \\ & = {{\boldsymbol{\xi}}}^{T} \left( t \right)\left[ {\sum\limits_{m = 1}^{r} {\sum\limits_{n = 1}^{r} {\mu_{m} \mu_{n} \left\{ {2{\varvec{e}}_{1}^{T} {\varvec{P}}{\boldsymbol{\varLambda}}_{mn} } \right\}} } + 2\lambda {\varvec{e}}_{1}^{T} {\varvec{Pe}}_{1} } \right]{{\boldsymbol{\xi}}}^{T} \left( t \right) \end{aligned} $$
$$ \begin{gathered} \dot{V}_{3} \left( t \right) + 2\lambda V_{3} \left( t \right) = \tau_{{\rm{M}}}^{2} {\dot{\varvec{x}}}^{T} \left( t \right){\varvec{R}}{\dot{\varvec{x}}}\left( t \right) + {\Gamma }_{1} + {\Gamma }_{2} \hfill \\ \, = {{\boldsymbol{\xi}}}^{T} \left( t \right)\left[ {\sum\limits_{m = 1}^{r} {\sum\limits_{n = 1}^{r} {\sum\limits_{p = 1}^{r} {\sum\limits_{q = 1}^{r} {\mu_{m} \mu_{n} } } \mu_{p} \mu_{q} \left\{ {\tau_{{\rm{M}}}^{2} {{\boldsymbol{\varLambda}}}_{mn}^{T} {\varvec{R}}{\boldsymbol{\varLambda }}_{pq} } \right\}} } + {\Gamma }_{1} + {\Gamma }_{2} } \right]{{\boldsymbol{\xi}}}^{T} \left( t \right) \hfill \\ \, \le {{\boldsymbol{\xi}}}^{T} \left( t \right)\left[ {\sum\limits_{m = 1}^{r} {\sum\limits_{n = 1}^{r} {\mu_{m} \mu_{n} \left\{ {\tau_{{\rm{M}}}^{2} {{\boldsymbol{\varLambda}}}_{mn}^{T} {\varvec{R}}{\boldsymbol{\varLambda }}_{mn} } \right\}} } + {\Gamma }_{1} + {\Gamma }_{2} } \right]{{\boldsymbol{\xi}}}^{T} \left( t \right) \hfill \\ \end{gathered} $$
$$ \dot{V}_{4} \left( t \right) + 2\lambda V_{4} \left( t \right) = \sum\limits_{i = 1}^{2} {\left[ {\dot{\eta }_{i} \left( t \right) + 2\lambda \eta_{i} \left( t \right)} \right]} $$

where \(\Gamma_{1} = - \tau_{{\text{M}}} e^{{ - 2\lambda \tau_{{\text{M}}} }} \int_{{t - \tau_{{\text{M}}} }}^{t - \tau \left( t \right)} {{\dot{\varvec{x}}}^{T} \left( s \right){\varvec{R}}{\dot{\varvec{x}}}\left( s \right)ds}\), \(\Gamma_{2} = - \tau_{{\text{M}}} e^{{ - 2\lambda \tau_{{\text{M}}} }} \int_{t - \tau \left( t \right)}^{t} {{\dot{\varvec{x}}}^{T} \left( s \right){\varvec{R}}{\dot{\varvec{x}}}\left( s \right)ds}\).

To handle the nonlinear integral terms in \(\dot{V}_{3} \left( t \right) + 2\lambda V_{3} \left( t \right)\), we utilize Lemma 2 and reciprocally convex combination inequality [45] to obtain

$$ \Gamma_{1} + \Gamma_{2} \le - {{\boldsymbol{\xi}}}^{T} \left( t \right){\boldsymbol{\varTheta \xi }}\left( t \right) $$
(33)

Follow to \(\dot{V}_{4} \left( t \right) + 2\lambda V_{4} \left( t \right)\), owing to \(\rho_{i} > 2\lambda\), combining (19) and (20), it can be deduced that

$$ \begin{gathered} \dot{\eta }_{i} \left( t \right) + 2\lambda \eta_{i} \left( t \right) < - v_{i} {\varvec{e}}_{i}^{T} \left( t \right){{\boldsymbol{\varPhi}}}_{i} {\varvec{e}}_{i} \left( t \right) + v_{i} \sigma_{i} \left( t \right)\left[ {{\varvec{x}}_{i} \left( {t - \tau \left( t \right)} \right) + {\varvec{e}}_{i} \left( t \right)} \right]^{T} {{\boldsymbol{\varPhi}}}_{i} \left[ {{\varvec{x}}_{i} \left( {t - \tau \left( t \right)} \right) + {\varvec{e}}_{i} \left( t \right)} \right] \end{gathered} $$
(34)

where \(v_{i} = 1 + \rho_{i} - 2\lambda\). It follows that

$$ \dot{V}_{4} \left( t \right) + 2\lambda V_{4} \left( t \right) \le {{\boldsymbol{\xi}}}^{T} \left( t \right)\left\{ {\sigma \left[ {{\varvec{e}}_{2}^{T} + {\varvec{e}}_{8}^{T} } \right]{\boldsymbol{\nu \varPhi }}\left[ {{\varvec{e}}_{2} + {\varvec{e}}_{8} } \right] - {\varvec{e}}_{8}^{T} {\boldsymbol{\nu \varPhi e}}_{8} } \right\}{{\boldsymbol{\xi}}}\left( t \right) $$
(35)

Define \(J = \dot{V}\left( t \right) + 2\lambda V\left( t \right) - \gamma^{2} {\varvec{w}}^{T} \left( t \right){\varvec{w}}\left( t \right) + {\varvec{y}}^{T} \left( t \right){\varvec{y}}\left( t \right)\). Combining (32)–(35), one obtains

$$ J \le {{\boldsymbol{\xi}}}^{T} \left( t \right){{\boldsymbol{\varSigma}}}_{0} {{\boldsymbol{\xi}}}\left( t \right) $$
(36)

where

\({{\boldsymbol{\varSigma}}}_{0} = \sum\limits_{m = 1}^{r} {\sum\limits_{n = 1}^{r} {\mu_{m} \mu_{n} \left\{ \begin{gathered} {\varvec{e}}_{1}^{T} \left[ {2\lambda {\varvec{P}} + {\text{sym}}\left\{ {{\varvec{P}}\left( {{\varvec{A}}_{m} + \Delta {\varvec{A}}_{m} } \right)} \right\} + {\varvec{Q}}} \right]{\varvec{e}}_{1} + \sigma {\varvec{e}}_{2}^{T} {\boldsymbol{\nu \varPhi e}}_{2} - e^{{ - 2\lambda \tau_{{\text{M}}} }} {\varvec{e}}_{3}^{T} {\varvec{Qe}}_{3} \hfill \\ - \left( {1 - \sigma } \right){\varvec{e}}_{8}^{T} {\boldsymbol{\nu \varPhi e}}_{8} - \gamma^{2} {\varvec{e}}_{9}^{T} {\varvec{e}}_{9} + {\text{sym}}\left\{ {{\varvec{e}}_{1}^{T} {\varvec{PB}}_{m} {\varvec{K}}_{n} \left( {{\varvec{e}}_{2} + {\varvec{e}}_{8} + {\varvec{e}}_{10} } \right) + {\varvec{e}}_{1}^{T} {\varvec{Pe}}_{9} } \right\} \hfill \\ + {\text{sym}}\left\{ {{\varvec{e}}_{1}^{T} {\varvec{PB}}_{m} {\varvec{e}}_{11} + \sigma {\varvec{e}}_{2}^{T} {\boldsymbol{\nu \varPhi e}}_{8} } \right\} - {{\boldsymbol{\varTheta}}} + \tau_{{\text{M}}}^{2} {{\boldsymbol{\varLambda}}}_{mn}^{T} {\varvec{R\varLambda }}_{mn} + {\varvec{e}}_{1}^{T} {\varvec{C}}_{m}^{T} {\varvec{C}}_{m} {\varvec{e}}_{1} \hfill \\ \end{gathered} \right\}} }\).

From (12), we can get whenever \(\left\| {\frac{{{\varvec{x}}_{i} \left( {\tilde{t}_{k}^{i} h} \right)}}{{\mu_{x}^{i} }}} \right\| \le M_{x}^{i}\) and \(\left\| {\frac{{{\varvec{u}}_{\text{c}} \left( t \right)}}{{\mu_{u} }}} \right\| \le M_{u}\), then

$$ \left\| {q\left( {\frac{{{\varvec{x}}_{i} \left( {\tilde{t}_{k}^{i} h} \right)}}{{\mu_{x}^{i} }}} \right) - \frac{{{\varvec{x}}_{i} \left( {\tilde{t}_{k}^{i} h} \right)}}{{\mu_{x}^{i} }}} \right\| \le \Delta_{x}^{i} $$
(37)
$$ \left\| {q\left( {\frac{{{\varvec{u}}_{\text{c}} \left( t \right)}}{{\mu_{u} }}} \right) - \frac{{{\varvec{u}}_{\text{c}} \left( t \right)}}{{\mu_{u} }}} \right\| \le \Delta_{u} $$
(38)

Without loss of generality, the following variables are defined

$$ \mu_{x}^{i} = \frac{{\kappa_{x}^{i} }}{{M_{x}^{i} }}\left\| {{\varvec{x}}_{i} \left( {\tilde{t}_{k}^{i} h} \right)} \right\| $$
(39)
$$ \mu_{u} = \frac{1}{{\sqrt {\kappa_{u} } M_{u} }}\left\| {{\varvec{u}}_{\text{c}} \left( t \right)} \right\| $$
(40)

where \(\kappa_{x}^{i} \ge 1\), \(0 < \kappa_{u} \le 1\) are scalars to be designed. It is easy to verify that (39) can guarantee the precondition of (37), and (40) can guarantee that of (38).

By combining (13), (37) and (39), we can get

$$ \phi_{x}^{T} \left( t \right)\phi_{x} \left( t \right) \le \frac{{\kappa_{x}^{2} {\Delta }_{x}^{2} }}{{M_{x}^{2} }}{{\boldsymbol{\xi}}}^{T} \left( t \right)\left( {{\varvec{e}}_{2} + {\varvec{e}}_{8} } \right)^{T} \left( {{\varvec{e}}_{2} + {\varvec{e}}_{8} } \right){{\boldsymbol{\xi}}}\left( t \right) $$
(41)

where \(\kappa_{x} = \max \left\{ {\kappa_{x}^{1} ,\kappa_{x}^{2} } \right\}\), \(\Delta_{x} = \max \left\{ {\Delta_{x}^{1} ,\Delta_{x}^{2} } \right\}\), \(M_{x} = \min \left\{ {M_{x}^{1} ,M_{x}^{2} } \right\}\).

Then, the inequality (41) can be rewritten as

$$ {{\boldsymbol{\xi}}}^{T} \left( t \right){{\boldsymbol{\varSigma}}}_{1} {{\boldsymbol{\xi}}}\left( t \right) \ge 0 $$
(42)

where \({{\boldsymbol{\varSigma}}}_{1} = \left( {{\varvec{e}}_{2} + {\varvec{e}}_{8} } \right)^{T} \left( {{\varvec{e}}_{2} + {\varvec{e}}_{8} } \right) - \frac{{M_{x}^{2} }}{{\kappa_{x}^{2} {\Delta }_{x}^{2} }}{\varvec{e}}_{10}^{T} {\varvec{e}}_{10}\).

Considering the property of Euclidean norm, we have

$$ \left\| {\left[ {\begin{array}{*{20}c} {{\overline{\varvec{x}}}_{1}^{T} \left( {\tilde{t}_{k}^{1} h} \right)} \\ {{\overline{\varvec{x}}}_{2}^{T} \left( {\tilde{t}_{k}^{2} h} \right)} \\ \end{array} } \right]} \right\| \le \left\| {\left[ {\begin{array}{*{20}c} {{\varvec{x}}_{1}^{T} \left( {\tilde{t}_{k}^{1} h} \right)} \\ {{\varvec{x}}_{2}^{T} \left( {\tilde{t}_{k}^{2} h} \right)} \\ \end{array} } \right]} \right\| + \left\| {\phi_{x} \left( t \right)} \right\| \le \left( {1 + \frac{{\kappa_{x} {\Delta }_{x} }}{{M_{x} }}} \right)\left\| {\left[ {\begin{array}{*{20}c} {{\varvec{x}}_{1}^{T} \left( {\tilde{t}_{k}^{1} h} \right)} \\ {{\varvec{x}}_{2}^{T} \left( {\tilde{t}_{k}^{2} h} \right)} \\ \end{array} } \right]} \right\| $$
(43)

From (14), (22), (38), (40), and (43), one has

$$ \phi_{u}^{T} \left( t \right)\phi_{u} \left( t \right) \le \frac{{\Delta_{u}^{2} }}{{s\kappa_{u} M_{u}^{2} }}\left( {1 + \frac{{\kappa_{x} \Delta_{x} }}{{M_{x} }}} \right)^{2} {{\boldsymbol{\xi}}}^{T} \left( t \right)\left( {{\varvec{e}}_{2} + {\varvec{e}}_{8} } \right)^{T} \left( {{\varvec{e}}_{2} + {\varvec{e}}_{8} } \right){{\boldsymbol{\xi}}}\left( t \right) $$
(44)

Further, we can rewrite the inequality (44) to

$$ {{{\xi}}}^{T} \left( t \right){{{\boldsymbol{\varSigma }}}}_{2} {{\boldsymbol{\xi}}}\left( t \right) \ge 0 $$
(45)

where \({{\boldsymbol{\varSigma}}}_{2} = \left( {{\varvec{e}}_{2} + {\varvec{e}}_{8} } \right)^{T} \left( {{\varvec{e}}_{2} + {\varvec{e}}_{8} } \right) - \frac{{s\kappa_{u} M_{u}^{2} }}{{\Delta_{u}^{2} }}\left( {1 + \frac{{\kappa_{x} \Delta_{x} }}{{M_{x} }}} \right)^{ - 2} {\varvec{e}}_{11}^{T} {\varvec{e}}_{11}\).

Define \(\kappa_{1} = \frac{1}{{\kappa_{x}^{2} }}\), \(\kappa_{2} = \kappa_{u} \left( {1 + \frac{{\kappa_{x} \Delta_{x} }}{{M_{x} }}} \right)^{ - 2}\). Since \(\kappa_{x}^{i} \ge 1\), \(0 < \kappa_{u} \le 1\), it is easy to obtain

\(0 < \kappa_{1} \le 1\)

$$0 < \kappa_{2} \le \left( {1 + \frac{{\Delta_{x} }}{{M_{x} }}} \right)^{ - 2}$$
(46)

Then, according to Lemma 3, it can be deduced that \({{\boldsymbol{\xi}}}^{T} \left( t \right){{\boldsymbol{\Sigma}}}_{0} {{\boldsymbol{\xi}}}\left( t \right) < 0\) holds if

$$ {{\boldsymbol{\varSigma}}}_{0} + \frac{1}{{\kappa_{1} }}{{\boldsymbol{\varSigma}}}_{1} + \frac{1}{{\kappa_{2} }}{{\boldsymbol{\varSigma}}}_{2} < 0 $$
(47)

Noting that \( \sum\nolimits_{{m = 1}}^{r} {\sum\nolimits_{{m = 1}}^{r} {\mu _{m} \mu _{n} {\text{ }}\left\{ {{\boldsymbol{\varOmega }}_{{mn}} } \right\}} } = \sum\nolimits_{{m = 1}}^{r} {\mu _{m}^{2} } \left\{ {{\boldsymbol{\varOmega }}_{{mm}} } \right\} + \sum\nolimits_{{m = 1}}^{r} {\sum\nolimits_{{n = m + 1}}^{r} {\mu _{m} \mu _{n} } } \left\{ {{\boldsymbol{\varOmega }}_{{mn}} + {\boldsymbol{\varOmega }}_{{nm}} } \right\} \), we can obtain that (47) can be guaranteed by

$$ \begin{gathered} \sum\limits_{m = 1}^{r} {\mu_{m}^{2} } \left\{ {{{\boldsymbol{\varPsi}}}_{mm} - {{\boldsymbol{\varTheta}}} + \tau_{{\text{M}}}^{2} {{\boldsymbol{\varLambda}}}_{mm}^{T} {\varvec{R\varLambda }}_{mm} - {{\boldsymbol{\varPi}}}_{13} {{\boldsymbol{\varPi}}}_{33}^{ - 1} {{\boldsymbol{\varPi}}}_{13}^{T} } \right\} + \sum\limits_{m = 1}^{r} {\sum\limits_{n = m + 1}^{r} {\mu_{m} \mu_{n} } } \hfill \\ \left\{ {{{\boldsymbol{\varPsi}}}_{mn} + {{\boldsymbol{\varPsi}}}_{nm} - {{\boldsymbol{\varTheta}}} + \frac{1}{2}\tau_{{\text{M}}}^{2} \left( {{{\boldsymbol{\varLambda}}}_{mn} + {{\boldsymbol{\varLambda}}}_{nm} } \right)^{T} {\varvec{R}}\left( {{{\boldsymbol{\varLambda}}}_{mn} + {{\boldsymbol{\varLambda}}}_{nm} } \right) - {{\boldsymbol{\varPi}}}_{13} {{\boldsymbol{\varPi}}}_{33}^{ - 1} {{\boldsymbol{\varPi}}}_{13}^{T} } \right\} < 0 \hfill \\ \end{gathered} $$
(48)

Based on Schur complement, (23) and (24) is equivalent to

$$ {{\boldsymbol{\varPsi}}}_{mm} - {{\boldsymbol{\varTheta}}} + \tau_{{\text{M}}}^{2} {{\boldsymbol{\varLambda}}}_{mm}^{T} {\varvec{R\varLambda }}_{mm} - {{\boldsymbol{\varPi}}}_{13} {{\boldsymbol{\varPi}}}_{33}^{ - 1} {{\boldsymbol{\varPi}}}_{13}^{T} < 0 $$
(49)
$$ {{\boldsymbol{\varPsi}}}_{mn} + {{\boldsymbol{\varPsi}}}_{nm} - {{\boldsymbol{\varTheta}}} + \frac{1}{2}\tau_{{\text{M}}}^{2} \left( {{{\boldsymbol{\varLambda}}}_{mn} + {{\boldsymbol{\varLambda}}}_{nm} } \right)^{T} {\varvec{R}}\left( {{{\boldsymbol{\varLambda}}}_{mn} + {{\boldsymbol{\varLambda}}}_{nm} } \right) - {{\boldsymbol{\varPi}}}_{13} {{\boldsymbol{\varPi}}}_{33}^{ - 1} {{\boldsymbol{\varPi}}}_{13}^{T} < 0 $$
(50)

respectively. Therefore, combining (36), (47), and (48), we can obtain that if (23) and (24) hold, then \(J \le 0\). It implies

$$ \dot{V}\left( t \right) \le \dot{V}\left( t \right) + 2\lambda V\left( t \right) \le \gamma^{2} {\varvec{w}}^{T} \left( t \right){\varvec{w}}\left( t \right) - {\varvec{y}}^{T} \left( t \right){\varvec{y}}\left( t \right) $$
(51)

Under zero conditions, the integration of both sides of (51) from \(0\) to \(+ \infty\) yields

$$ \left\| {{\varvec{y}}\left( t \right)} \right\|_{2} \le \gamma \left\| {{\varvec{w}}\left( t \right)} \right\|_{2} $$
(52)

With condition \(w\left( t \right) \equiv 0\), we can get \(\dot{V}\left( t \right) \le - 2\lambda V\left( t \right), t \in \Omega_{{t_{k} }}\) from (51). Thus, we have

$$ V\left( t \right) \le e^{{ - 2\lambda \left( {t - t_{k} h - \tau_{{t_{k} }} } \right)}} V\left( {t_{k} h + \tau_{{t_{k} }} } \right) \le \cdots \le e^{ - 2\lambda t} V\left( {0} \right) $$
(53)

From (31) and (53), it follows that

$$ \lambda_{\min } \left( {\varvec{P}} \right)\left\| {{\varvec{x}}\left( t \right)} \right\|^{2} \le e^{ - 2\lambda t} \lambda_{{\text{M}}} \left\| {{\varvec{x}}\left( 0 \right)} \right\|^{2} + \sum\limits_{i = 1}^{2} {\eta_{0{\text{i}}} \left[ {e^{ - 2\lambda t} - e^{{ - \left( {1 + \rho_{i} } \right)t}} } \right]} \le e^{ - 2\lambda t} \lambda_{{\text{M}}} \left\| {{\varvec{x}}\left( 0 \right)} \right\|^{2} $$
(54)

Letting \(\beta = \sqrt {{{\lambda_{{\text{M}}} } \mathord{\left/ {\vphantom {{\lambda_{{\text{M}}} } {\lambda_{\min } \left( {\varvec{P}} \right)}}} \right. \kern-0pt} {\lambda_{\min } \left( {\varvec{P}} \right)}}}\), (54) follows that

$$ \left\| {{\varvec{x}}\left( t \right)} \right\| \le \beta e^{ - \lambda t} \left\| {{\varvec{x}}\left( 0 \right)} \right\| $$
(55)

Then from (52), (55) and Definition 1, we naturally obtain that system (18) is exponentially stable while having \(H\infty\) performance level \(\gamma\). This completes the proof.

Appendix 2

Proof of Theorem 2

Using the Schur complement to (22) leads to

$$ \left[ {\begin{array}{*{20}c} { - \frac{1}{s}{\varvec{I}}} & {{\varvec{K}}_{m}^{T} } \\ * & { - {\varvec{I}}} \\ \end{array} } \right] < 0 $$
(56)

with \({\varvec{Y}}_{m} = {\varvec{K}}_{m} {\varvec{X}}\), performing congruence transformation to (56) with \({\text{diag}}\left\{ {{\varvec{X}},\,{\varvec{I}}} \right\}\) yields

$$ \left[ {\begin{array}{*{20}c} { - {\varvec{X}}\frac{1}{s}{\varvec{IX}}} & {{\varvec{Y}}_{m}^{T} } \\ * & { - {\varvec{I}}} \\ \end{array} } \right] < 0 $$
(57)

It is known that \(\left( {{{\boldsymbol{\Delta}}} - \frac{1}{\vartheta }{\varvec{X}}} \right){{\boldsymbol{\Delta}}}^{ - 1} \left( {{{\boldsymbol{\Delta}}} - \frac{1}{\vartheta }{\varvec{X}}} \right) \ge 0\) always holds for any matrix \({{\boldsymbol{\Delta}}} > 0\) and scalar \(\vartheta > 0\), which implies that

$$ - {\varvec{X\Delta }}^{ - 1} {\varvec{X}} \le \vartheta^{2} {{\boldsymbol{\Delta}}} - 2\vartheta {\varvec{X}} $$
(58)

Let \({{\boldsymbol{\Delta}}}\) stands for \(s{\varvec{I}}\), (58) becomes \(- {\varvec{X}}\frac{1}{s}{\varvec{X}} \le \vartheta_{1}^{2} s{\varvec{I}} - 2\vartheta_{1} {\varvec{X}}\). Then, the inequality (57) can be guaranteed by (26).

Note that the inequalities (23) and (24) can be equivalently expressed as (59) and (60), respectively.

$$ \left[ {\begin{array}{*{20}c} {{\tilde{\varvec{\varPsi }}}_{{mm}} - {\varvec{\varTheta }}} & {\tau _{{\rm{M}}} {\tilde{\varvec{\varLambda }}}_{{mm}} ^{T} \user2{R}} & {{\varvec{\varPi }}_{{13}} } \\ * & { - \user2{R}} & {\varvec{0}} \\ * & * & {{\varvec{\varPi }}_{{33}} } \\ \end{array} } \right] + {\text{sym}}\left\{ {\user2{H}_{{G_{m} }} \user2{F}_{m} \left( t \right)\user2{H}_{{E_{m} }} } \right\} < 0 $$
(59)
$$ \left[ {\begin{array}{*{20}c} {{\tilde{\boldsymbol{\varPsi }}}_{mn} + {\tilde{\boldsymbol{\varPsi }}}_{nm} - {{\boldsymbol{\varTheta}}}} &{\tau_{{\text{M}}} \left( {{\tilde{\boldsymbol{\varLambda }}}_{mn} + {\tilde{\boldsymbol{\varLambda }}}_{nm} } \right)^{T} {\varvec{R}}} & {{{\boldsymbol{\varPi}}}_{13} } \\ * & { - 2{\varvec{R}}} & {\varvec{0}} \\ * & * & {{{\boldsymbol{\varPi}}}_{33} } \\ \end{array} } \right] \, + {\text{sym}}\left\{ {{\varvec{H}}_{{G_{m} }} {\varvec{F}}_{m} \left( t \right){\varvec{H}}_{{E_{m} }} } \right\} + {\text{sym}}\left\{ {{\varvec{H}}_{{G_{n} }} {\varvec{F}}_{n} \left( t \right){\varvec{H}}_{{E_{n} }} } \right\} < 0 $$
(60)

where \({\varvec{H}}_{{G_{m} }} = \left[ {\begin{array}{*{20}c} {{\varvec{G}}_{m}^{T} {\varvec{Pe}}_{1} } & {\tau_{{\text{M}}} {\varvec{G}}_{m}^{T} {\varvec{R}}} & {\varvec{0}} \\ \end{array} } \right]^{T}\), \({\varvec{H}}_{{E_{m} }} = \left[ {\begin{array}{*{20}c} {{\varvec{E}}_{m} {\varvec{e}}_{1} } & {\varvec{0}} & {\varvec{0}} \\ \end{array} } \right]\), \(\begin{gathered} {\tilde{\boldsymbol{\varPsi }}}_{mn} = {\varvec{e}}_{1}^{T} \left[ {2\lambda {\varvec{P}} + {\varvec{A}}_{m}^{T} {\varvec{P}} + {\varvec{PA}}_{m} + {\varvec{Q}}} \right]{\varvec{e}}_{1} + \sigma {\varvec{e}}_{2}^{T} {\boldsymbol{\nu \varPhi e}}_{2} - e^{{ - 2\lambda \tau_{{\text{M}}} }} {\varvec{e}}_{3}^{T} {\varvec{Qe}}_{3} - \left( {1 - \sigma } \right){\varvec{e}}_{8}^{T} {\boldsymbol{\nu \varPhi e}}_{8} - \gamma^{2} {\varvec{e}}_{9}^{T} {\varvec{e}}_{9} \hfill \\ \quad \quad \quad - \frac{{M_{x}^{2} }}{{{\Delta }_{x}^{2} }}{\varvec{e}}_{10}^{T} {\varvec{e}}_{10} - \frac{{sM_{u}^{2} }}{{\Delta_{u}^{2} }}{\varvec{e}}_{11}^{T} {\varvec{e}}_{11} + {\text{sym}}\left\{ {{\varvec{e}}_{1}^{T} {\varvec{PB}}_{m} {\varvec{K}}_{n} \left( {{\varvec{e}}_{2} + {\varvec{e}}_{8} + {\varvec{e}}_{10} } \right) + {\varvec{e}}_{1}^{T} {\varvec{Pe}}_{9} + {\varvec{e}}_{1}^{T} {\varvec{PB}}_{m} {\varvec{e}}_{11} + \sigma {\varvec{e}}_{2}^{T} {\boldsymbol{\nu \varPhi e}}_{8} } \right\},\; \hfill \\ \quad \quad \quad {\tilde{\boldsymbol{\varLambda }}}_{mn} = {\varvec{A}}_{m} {\varvec{e}}_{1} + {\varvec{B}}_{m} {\varvec{K}}_{n} \left( {{\varvec{e}}_{2} + {\varvec{e}}_{8} + {\varvec{e}}_{10} } \right) + {\varvec{e}}_{9} + {\varvec{B}}_{m} {\varvec{e}}_{11} . \hfill \\ \end{gathered}\)

Using Lemma 4, there exist positive scalar \(\varepsilon_{m}\), \(\varepsilon_{n}\)\(\left( {1 \le m < n \le r} \right)\) such that

$$ \begin{gathered} {\text{sym}}\left\{ {{\varvec{H}}_{{G_{m} }} {\varvec{F}}_{m} \left( t \right){\varvec{H}}_{{E_{m} }} } \right\} \le \varepsilon_{m} {\varvec{H}}_{{G_{m} }} {\varvec{H}}_{{G_{m} }}^{T} + \varepsilon_{m}^{ - 1} {\varvec{H}}_{{E_{m} }}^{T} {\varvec{H}}_{{E_{m} }} \hfill \\ {\text{sym}}\left\{ {{\varvec{H}}_{{G_{n} }} {\varvec{F}}_{n} \left( t \right){\varvec{H}}_{{E_{n} }} } \right\} \le \varepsilon_{n} {\varvec{H}}_{{G_{n} }} {\varvec{H}}_{{G_{n} }}^{T} + \varepsilon_{n}^{ - 1} {\varvec{H}}_{{E_{n} }}^{T} {\varvec{H}}_{{E_{n} }} \hfill \\ \end{gathered} $$
(61)

Therefore, (59) and (60) are equivalent to

$$ \left[ {\begin{array}{*{20}l} {{\tilde{\boldsymbol{\varPsi }}}_{mm} - {{\boldsymbol{\varTheta}}}} & {\tau_{{\text{M}}} {\tilde{\boldsymbol{\varLambda }}}_{mm}^{T} {\varvec{R}}} & {{{\boldsymbol{\varPi}}}_{13} } & {{{\boldsymbol{\varPi}}}_{14} } \\ * & { - {\varvec{R}}} & {\varvec{0}} & {\varvec{0}} \\ * & * & {{{\boldsymbol{\varPi}}}_{33} } & {\varvec{0}} \\ * & * & * & {{{\boldsymbol{\varPi}}}_{44} } \\ \end{array} } \right] < 0 $$
(62)
$$ \left[ {\begin{array}{*{20}l} {{\tilde{\boldsymbol{\varPsi }}}_{mn} + {\tilde{\boldsymbol{\varPsi }}}_{nm} - {{\boldsymbol{\varTheta}}}} & {\tau_{{\text{M}}} \left( {{\tilde{\boldsymbol{\varLambda }}}_{mn} + {\tilde{\boldsymbol{\varLambda }}}_{nm} } \right)^{T} {\varvec{R}}} & {{{\boldsymbol{\varPi}}}_{13} } & {{\tilde{\boldsymbol{\varPi }}}_{14} } \\ * & { - 2{\varvec{R}}} & {\varvec{0}} & {\varvec{0}} \\ * & * & {{{\boldsymbol{\varPi}}}_{33} } & {\varvec{0}} \\ * & * & * & {{\boldsymbol{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\Pi } }}_{44} } \\ \end{array} } \right] < 0 $$
(63)

where \(\begin{aligned}&{{\boldsymbol{\varPi}}}_{14} = \left[ {\begin{array}{*{20}l} {\varepsilon_{m} {\varvec{e}}_{1}^{T} {\varvec{PG}}_{m} } & {{\varvec{e}}_{1}^{T} {\varvec{E}}_{m}^{T} } \\ {\tau_{{\text{M}}} \varepsilon_{m} {\varvec{RG}}_{m} } & {\varvec{0}} \\ {\varvec{0}} & {\varvec{0}} \\ \end{array} } \right],\\&{\tilde{\boldsymbol{\varPi }}}_{14} = \left[ {\begin{array}{*{20}c} {\varepsilon_{m} {\varvec{e}}_{1}^{T} {\varvec{PG}}_{m} } & {{\varvec{e}}_{1}^{T} {\varvec{E}}_{m}^{T} } & {\varepsilon_{n} {\varvec{e}}_{1}^{T} {\varvec{PG}}_{n} } & {{\varvec{e}}_{1}^{T} {\varvec{E}}_{n}^{T} } \\ {\tau_{{\text{M}}} \varepsilon_{m} {\varvec{RG}}_{m} } & {\varvec{0}} & {\tau_{{\text{M}}} \varepsilon_{n} {\varvec{RG}}_{n} } & {\varvec{0}} \\ {\varvec{0}} & {\varvec{0}} & {\varvec{0}} & {\varvec{0}} \\ \end{array} } \right].\end{aligned}\)

Define \({\varvec{X}} = {\varvec{P}}^{ - 1}\). Multiplying the left- and right-hand sides of (21) by \({\text{diag}}\left\{ {{\varvec{X}},{\varvec{X}},{\varvec{X}},{\varvec{X}},{\varvec{X}},} \right.\)\(\left. {\varvec{X}} \right\}\), one can obtain (25). Similarly, multiplying the left- and right-hand sides of inequality (62) by \({\text{diag}}\left\{ {{\varvec{X}},\,{\varvec{X}},\,{\varvec{X}},\,{\varvec{X}},\,{\varvec{X}},\,{\varvec{X}},\,{\varvec{X}},\,{\varvec{X}},\,{\varvec{I}},\,{\varvec{X}},\,{\varvec{I}},\,{\varvec{R}}^{ - 1} ,\,{\varvec{I}},\,{\varvec{I}},\,{\varvec{I}},\,{\varvec{I}},\,{\varvec{I}}} \right\}\) and inequality (63) by \({\text{diag}}\left\{ {{\varvec{X}},{\varvec{X}},{\varvec{X}},{\varvec{X}},{\varvec{X}},{\varvec{X}},{\varvec{X}},{\varvec{X}},{\varvec{I}},{\varvec{X}},{\varvec{I}},{\varvec{R}}^{ - 1} ,{\varvec{I}},{\varvec{I}},{\varvec{I}},{\varvec{I}},{\varvec{I}},{\varvec{I}},{\varvec{I}}} \right\}\). Define new matrix variables \({\overline{\varvec{Q}}} = {\varvec{XQX}}\), \({\overline{\varvec{R}}} = {\varvec{XRX}}\), \({\overline{\boldsymbol{\varPhi }}} = \left( {{\boldsymbol{\nu \varPhi }}} \right)^{ - 1}\), \({\overline{\varvec{U}}} = {\text{diag}}\left\{ {{\varvec{X}},{\varvec{X}},{\varvec{X}}} \right\} \cdot {\varvec{U}} \cdot {\text{diag}}\left\{ {{\varvec{X}},{\varvec{X}},{\varvec{X}}} \right\}\). Let \({{\boldsymbol{\Delta}}}\) stands for \({\overline{\varvec{R}}}\), \({\overline{\boldsymbol{\varPhi }}}\), and \({\varvec{I}}\), (58) becomes \(- {\varvec{R}}^{ - 1} = - {\varvec{X\overline{R}}}^{ - 1} {\varvec{X}} \le \vartheta_{2}^{2} {\overline{\varvec{R}}} - 2\vartheta_{2} {\varvec{X}}\), \(- {\varvec{X}}{\overline{\boldsymbol{\varPhi }}}^{ - 1} {\varvec{X}} \le\)\(\vartheta_{3}^{2} {\overline{\boldsymbol{\varPhi }}} - 2\vartheta_{3} {\varvec{X}}\), and \(- {\varvec{XX}} \le \vartheta_{4}^{2} {\varvec{I}} - 2\vartheta_{4} {\varvec{X}}\), respectively. Using Schur complement, (27) is equivalent to \({\varvec{X}}{\overline{\boldsymbol{\varPhi }}}^{ - 1} {\varvec{X}} < \varepsilon_{0} {\varvec{I}}\). Then, by the Schur complement, (28) and (29) can be obtained easily. This completes the proof.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Peng, J., Xie, S. et al. Exponential stabilization of aero-engine T-S fuzzy system with decentralized dynamic event-triggered mechanism. Nonlinear Dyn 111, 21627–21646 (2023). https://doi.org/10.1007/s11071-023-08906-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08906-9

Keywords

Navigation