Skip to main content
Log in

Low-complexity prescribed performance tracking control for uncertain high-order nonlinear systems considering input quantization

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Low-complexity prescribed performance control (PPC) is a control methodology whose strongest feature is its structural simplicity, namely, uncertainty can be handled without unknown parameter estimators or approximation structures, e.g., fuzzy logic or neural networks, considered in the design of the control scheme. This work shows that low-complexity PPC can tackle uncertain high-order odd-rational power nonlinear dynamics, i.e., an integrator chain where the power is the ratio of odd integers. State of the art has shown the feasibility of PPC for strict-feedback nonlinear dynamics (an integrator chain with a power equal to one) or high-order odd-integer-power nonlinear dynamics. In this paper, we show that the same structural simplicity of PPC can be retained for the more general class of high-order odd-rational-power nonlinear systems. Note that all the methods proposed in the literature for handling high-order nonlinearities cannot be used with rational powers (unless restricting the system’s nonlinearity growth). Therefore, a new lemma is proposed to handle the odd-rational power scenario without restricting the nonlinearities’ growth. Interestingly, the developed scheme generalizes the most advanced PPC and effectively handles the input quantization, and unknown power problems studied recently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Krstic, M., Kokotovic, P.V., Kanellakopoulos, I.: Nonlinear and Adaptive Control Design. John Wiley & Sons Inc., London (1995)

    MATH  Google Scholar 

  2. Zhang, X., Tan, J., Wu, J., Chen, W.: Event-triggered-based fixed-time adaptive neural fault-tolerant control for stochastic nonlinear systems under actuator and sensor faults. Nonlinear Dyn. 108, 2279–2296 (2022)

    Article  Google Scholar 

  3. Qi, X., Xu, S., Li, Y., Chu, Y.: Global fixed-time event-triggered control for stochastic nonlinear systems with full state constraints. Nonlinear Dyn. 111, 7403–7415 (2023)

    Article  Google Scholar 

  4. Ge, S.S., Hang, C.C., Lee, T.H., Zhang, T.: Stable Adaptive Neural Network Control, vol. 13. Springer, Berlin (2013)

    MATH  Google Scholar 

  5. Lv, M., Schutter, B.D., Baldi, S.: Non-recursive control for formation-containment of HFV swarms with dynamic event-triggered communication. IEEE Trans. Ind. Inform. (2022). https://doi.org/10.1109/TII.2022.3163573

    Article  Google Scholar 

  6. Qi, R., Tao, G., Jiang, B.: Fuzzy System Identification and Adaptive Control. Springer, Berlin (2019)

    Book  MATH  Google Scholar 

  7. Zhai, J., Wang, H., Tao, J., He, Z.: Observer-based adaptive fuzzy finite time control for non-strict feedback nonlinear systems with unmodeled dynamics and input delay. Nonlinear Dyn. 111, 1417–1440 (2023)

    Article  Google Scholar 

  8. Wang, N., Wang, Y., Park, J.H., Lv, M., Zhang, F.: Fuzzy adaptive finite-time consensus tracking control of high-order nonlinear multi-agent networks with dead zone. Nonlinear Dyn. 106, 3363–3378 (2021)

    Article  Google Scholar 

  9. Bai, W., Liu, P.X., Wang, H.: Fixed-time adaptive fuzzy control for nonlinear interconnection high-order systems with unknown control direction. Nonlinear Dyn. (2023). https://doi.org/10.1007/s11071-023-08724-z

    Article  Google Scholar 

  10. Theodorakopoulos, A., Rovithakis, G.A.: Guaranteeing preselected tracking quality for uncertain strict-feedback systems with deadzone input nonlinearity and disturbances via low-complexity control. Automatica 54, 135–145 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bechlioulis, C.P., Rovithakis, G.A.: Robust partial-state feedback prescribed performance control of cascade systems with unknown nonlinearities. IEEE Trans. Autom. Control 56(9), 2224–2230 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bechlioulis, C.P., Rovithakis, G.A.: A low-complexity global approximation-free control scheme with prescribed performance for unknown pure feedback systems. Automatica 50(4), 1217–1226 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Choi, Y.H., Yoo, S.J.: Robust event-driven tracking control with preassigned performance for uncertain input-quantized nonlinear pure-feedback systems. J. Frankl. Inst. 355(8), 3567–3582 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ding, J., Zhang, W.: Prescribed performance tracking control for high-order uncertain nonlinear systems. Nonlinear Dyn. (2023). https://doi.org/10.1007/s11071-023-08604-6

    Article  Google Scholar 

  15. Zhang, J.X., Yang, G.H.: Low-complexity tracking control of strict-feedback systems with unknown control directions. IEEE Trans. Autom. Control 64(12), 5175–5182 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bikas, L.N., Rovithakis, G.A.: Combining prescribed tracking performance and controller simplicity for a class of uncertain MIMO nonlinear systems with input quantization. IEEE Trans. Autom. Control 64(3), 1228–1235 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Theodorakopoulos, A., Rovithakis, G.A.: Low-complexity prescribed performance control of uncertain MIMO feedback linearizable systems. IEEE Trans. Autom. Control 61(7), 1946–1952 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, Y.H., Li, H.: Adaptive asymptotic tracking using barrier functions. Automatica 98, 239–246 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lin, W., Pongvuthithum, R.: Adaptive output tracking of inherently nonlinear systems with nonlinear parameterization. IEEE Trans. Autom. Control 48(10), 1737–1749 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lin, W., Qian, C.: Adding one power integrator: a tool for global stabilization of high-order lower-triangular systems. Syst. Control Lett. 39(5), 339–351 (2000)

  21. Lv, M., Yu, W., Cao, J., Baldi, S.: Consensus in high-power multi-agent systems with mixed unknown control directions via hybrid nussbaum-based control. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.3028171

  22. Lv, M., Wang, N.: Distributed control for uncertain multi-agent systems with the powers of positive-odd numbers: a low-complexity design approach. IEEE Trans. Autom. Control (2023). https://doi.org/10.1109/TAC.2023.3266986

    Article  Google Scholar 

  23. Sun, Z.Y., Li, T., Yang, S.H.: A unified time-varying feedback approach and its applications in adaptive stabilization of high-order uncertain nonlinear systems. Automatica 70, 249–257 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sun, Z.Y., Zhang, C.H., Wang, Z.: Adaptive disturbance attenuation for generalized high-order uncertain nonlinear systems. Automatica 80, 102–109 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, N., Wen, G., Wang, Y., Zhang, F., Zemouche, A.: Fuzzy adaptive cooperative consensus tracking of high-order nonlinear multiagent networks with guaranteed performances. IEEE Trans. Cybern. 52(9), 8838–8850 (2021)

    Article  Google Scholar 

  26. Sun, Z.Y., Shao, Y., Chen, C.C.: Fast finite-time stability and its application in adaptive control of high-order nonlinear system. Automatica 106, 339–348 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sun, Z.Y., Xue, L.R., Zhang, K.: A new approach to finite-time adaptive stabilization of high-order uncertain nonlinear system. Automatica 58, 60–66 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yu, W., Li, Y., Wen, G., Yu, X., Cao, J.: Observer design for tracking consensus in second-order multi-agent systems: fractional order less than two. IEEE Trans. Autom. Control 62(2), 894–900 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, N., Wang, Y., Wen, G., Lv, M., Zhang, F.: Fuzzy adaptive constrained consensus tracking of high-order multi-agent networks: a new event-triggered mechanism. IEEE Trans. Syst. Man Cybern. Syst. 52(9), 5468–5480 (2021)

    Article  Google Scholar 

  30. Yoo, S.J.: Simplified global fault accommodation control design of uncertain nonlinear systems with unknown time-varying powers. Nonlinear Dyn. 99(2), 1115–1128 (2020)

    Article  MATH  Google Scholar 

  31. Man, Y., Liu, Y.: Global adaptive stabilization and practical tracking for nonlinear systems with unknown powers. Automatica 100, 171–181 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yoo, S.J., Kim, T.H.: Decentralized low-complexity tracking of uncertain interconnected high-order nonlinear systems with unknown high powers. J. Frankl. Inst. 355(11), 4515–4532 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yoo, S.J.: A robust low-complexity tracker design with preassigned performance for uncertain high-order nonlinear systems with unknown time-varying delays and high powers. J. Frankl. Inst. 355(2), 675–692 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lai, G., Liu, Z., Chen, C.P., Zhang, Y.: Adaptive asymptotic tracking control of uncertain nonlinear system with input quantization. Syst. Control Lett. 96, 23–29 (2016)

  35. Zhou, J., Wen, C., Yang, G.: Adaptive backstepping stabilization of nonlinear uncertain systems with quantized input signal. IEEE Trans. Autom. Control 59(2), 460–464 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gao, S., Dong, H., Ning, B.: Neural adaptive dynamic surface control for uncertain strict-feedback nonlinear systems with nonlinear output and virtual feedback errors. Nonlinear Dyn. 90(4), 2851–2867 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sontag, E.D.: Mathematical Control Theory: Deterministic Finite Dimensional Systems, vol. 6. Springer, Berlin (2013)

    Google Scholar 

  38. Manring, N.D., Fales, R.C.: Hydraulic Control Systems. Wiley, New York (2020)

    Google Scholar 

  39. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. In: Appl (1972)

Download references

Acknowledgements

This research was supported by the Young Talent Support Project for Military Science and Technology under Grant 2022-JCJQ-QT-018, Young Talent Fund of Association for Science and Technology in Shaaxi under Grant 20220101, and Postdoctoral International Exchange Program Introduction Project under Grant YJ20220347.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maolong Lv.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 5

The goal is to find an upper and lower bound in the form

$$\begin{aligned} \underline{\vartheta }x_1^p+\underline{\mu } x_2^p\le (x_1+x_2)^p \le \bar{\vartheta } x_1^p+\bar{\mu } x_2^p \end{aligned}$$
(48)

for some appropriately bounded functions \(\underline{\mu }(\cdot ,\cdot )\), \(\underline{\vartheta }(\cdot ,\cdot )\), \(\bar{\mu }(\cdot ,\cdot )\), and \(\bar{\vartheta }(\cdot ,\cdot )\). By employing the binomial theorem [39, Sect. 3.1, p. 10], an upper bound can be derived for \(\forall x_1\), \( x_2\in {\mathbb {R}}\):

$$\begin{aligned}&(x_1+x_2)^p\le x_1^p+x_2^p+\sum _{k=1}^{p-1} \left( \begin{array}{c} p \\ k \\ \end{array}\right) |x_1|^k|x_2^{p-k}|\nonumber \\&\quad \le x_1^p+x_2^p+\sum _{k=1}^{p-1} \bigg (\frac{k}{p}\varepsilon ^{\frac{p}{k}}|x_1|^p\nonumber \\&\qquad +\frac{p-k}{p} \left( \begin{array}{c} p \\ k \\ \end{array}\right) \varepsilon ^{\frac{-p}{p-k}}|x_2|^p\bigg )\nonumber \\&\quad \le x_1^p+x_2^p+\sum _{k=1}^{p-1}\varepsilon _k|x_1|^p +\sum _{k=1}^{p-1}\omega _k|x_2|^p\nonumber \\&\quad \le \big [1+\bar{\epsilon }\cdot \textrm{sign}(x_1)\big ]x_1^p +\big [1+\omega \cdot \textrm{sign}(x_2)\big ]x_2^p, \end{aligned}$$
(49)

where the second inequality relies on Lemma 4, \(\varepsilon _k=\frac{k}{p}\varepsilon ^{\frac{p}{k}}\), \(\omega _k=\frac{p-k}{p}\left( \begin{array}{c} p \\ k \\ \end{array}\right) \varepsilon ^{\frac{-p}{p-k}}\), \(\omega =\sum _{k=1}^{p-1}\omega _k\), and \(\bar{\epsilon }=\sum _{k=1}^{p-1}\varepsilon _k\) satisfies \(0<\bar{\epsilon }<1\) by appropriately selecting the small positive constant \(\varepsilon \).

A lower bound will be sought along the following three situations.

Situation 1: When \(x_1<0\) and \(x_1+x_2\ge 0\), we immediately have \((x_1+x_2)^p\ge 0\ge x_1^p\) as p is a positive odd integer.

Situation 2: When \(x_1<0\) and \(x_1+x_2<0\), it follows that

$$\begin{aligned}&x_1^p+x_2^p\nonumber \\&\quad = 2\left[ \sum _{m=1}^{\frac{p-1}{2}}\left( \begin{array}{c} p \\ 2m-1 \\ \end{array}\right) \underbrace{\overbrace{\left( \frac{x_1+x_2}{2}\right) ^{2m-1}}^{<0} \overbrace{\left( \frac{x_1-x_2}{2}\right) ^{p-2m+1}}^{>0}}_{<0}\right. \nonumber \\&\qquad \left. +\left( \frac{x_1+x_2}{2}\right) ^p\right] \le 2^{1-p}(x_1+x_2), \end{aligned}$$
(50)

which indicates that \((x_1+x_2)^p\ge 2^{p-1}x_1^p+2^{p-1}x_2^p\).

Situation 3: When \(x_1\ge 0\) and \(x_2\in {\mathbb {R}}\), then following similar derivations to (49), it holds that \((x_1-x_2)^p=\big [x_1+(-x_2)\big ]^p\le \big [1+\bar{\epsilon }\cdot \textrm{sign}(x_1)\big ]x_1^p -\big [1-\omega \cdot \textrm{sign}(x_2)\big ]x_2^p.\) Besides, note that \((x_1+x_2)^p+(x_1-x_2)^p=2\Big [x_1^p+\sum _{k=1}^{\frac{p-1}{2}} \left( \begin{array}{c} p \\ 2k-1 \\ \end{array}\right) \overbrace{x_1^{2k-1}}^{\ge 0} \overbrace{x_2^{p-2k+1}}^{\ge 0}\Big ]\ge 2x_1^2\). Thus, we have \((x_1+x_2)^p\ge [1-\bar{\epsilon }\cdot \textrm{sign}(x_1)]x_1^p+[1+\omega \cdot \textrm{sign}(x_2)]x_2^p\).

Having derived all the necessary upper and lower bounds in the form of (48), we conclude that the equality \(\big [x_1^p\vartheta (x_1,x_2)+x_2^p\mu (x_1,x_2)\big ]^{\frac{1}{q}}= (x_1+x_2)^{\frac{p}{q}}\) holds for any \(x_1\), \(x_2\), for some function \(\vartheta (\cdot ,\cdot )\subset \big [1-\bar{\epsilon }, \max \{1+\bar{\epsilon }, 2^{p-1}\}\big ]\) with \(\bar{\epsilon }\in (0,1)\) and \(|\mu (\cdot ,\cdot )|\le \bar{\upsilon }\) with \(\bar{\upsilon }>0\) being independent of \(x_1\) and \(x_2\). This completes the proof. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, L., Lv, M., Cao, J. et al. Low-complexity prescribed performance tracking control for uncertain high-order nonlinear systems considering input quantization. Nonlinear Dyn 111, 19979–19991 (2023). https://doi.org/10.1007/s11071-023-08886-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08886-w

Keywords

Navigation