Skip to main content
Log in

Further physical study about solution structures for nonlinear q-deformed Sinh–Gordon equation along with bifurcation and chaotic behaviors

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The main novelty of this paper lies in five aspects: (1) To our best knowledge, the modified \(\left( \frac{G'}{G^2}\right) \)-expansion method was firstly applied in nonlinear q-deformed Sinh–Gordon equation (NQSGE). (2) The effects of wave obliqueness about NQSGE are firstly discussed in this paper which did not happen in previous papers. (3) Phase portraits and bifurcation behaviors about NQSGE are also firstly investigated in Hamiltonian system that did not appear in previous studies. (4) Sensitive analysis to initial value and chaotic behavior are also firstly studied in NQSGE. (5) The modified Riemann–Liouville, Beta, Conformable and M-truncated fractional derivatives are tested for accuracy in Fig. 18a, b. To our best knowledge, we seem firstly compare the relations and distinctions among different fractional-order derivatives in NQSGE model. The generalizations (1)–(5) indicated that the wave propagation of solitions about NQSGE model is mastered by the changed fraction, changed wave obliqueness angle and other physical factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. Ates, M.: Circuit theory approach to stability and passivity analysis of nonlinear dynamical systems. Int. J. Circ. Theor. App. 50, 214–225 (2022)

    Google Scholar 

  2. Sardar, A., Husnine, S.M., Rizvi, S.T.R., Younis, M., Ali, K.: Multiple travelling wave solutions for electrical transmission line model. Nonlinear Dyn. 82, 1317–1324 (2015)

    MathSciNet  MATH  Google Scholar 

  3. El-Borai, M.M., El-Owaidy, H.M., Ahmed, H.M., Arnous, A.H.: Exact and soliton solutions to nonlinear transmission line model. Nonlinear Dyn. 87, 767–773 (2017)

    Google Scholar 

  4. Essama, B.G.O., Bisse, J.T.N., Essiane, S.N., Atangana, J.: Peregrination, layers’ and multi-peaks’ generation induced by cubic-quintic-saturable nonlinearities and higher-order dispersive effects in a system of coupled nonlinear left-handed transmission lines. Nonlinear Dyn. 1–27 (2023)

  5. Njah, A.N.: Synchronization and anti-synchronization of double hump duffing-van der pol oscillators via active control. J. Inf. Cpmput. Sci. 4, 243–250 (2009)

    Google Scholar 

  6. Liu, J.G., Ye, Q.: Stripe solitons and lump solutions for a generalized Kadomtsev–Petviashvili equation with variable coefficients in fluid mechanics. Nonlinear Dyn. 96, 23–29 (2019)

    MATH  Google Scholar 

  7. Yusuf, A., Sulaiman, T.A., Alshomrani, A.S., Baleanu, D.: Breather and lump-periodic wave solutions to a system of nonlinear wave model arising in fluid mechanics. Nonlinear Dyn. 110(4), 3655–3669 (2022)

    Google Scholar 

  8. Najafi, R., Bahrami, F., Hashemi, M.S.: Classical and nonclassical Lie symmetry analysis to a class of nonlinear time-fractional differential equations. Nonlinear Dyn. 87, 1785–1796 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Fendzi-Donfack, E., Tala-Tebue, E., Inc, M., Kenfack-Jiotsa, A., Nguenang, J.P., Nana, L.: Dynamical behaviours and fractional alphabeticalexotic solitons in a coupled nonlinear electrical transmission lattice including wave obliqueness. Opt. Quant. Electron. 55(1), 35 (2023)

    Google Scholar 

  10. Wang, Y., Liu, S., Khan, A.: On fractional coupled logistic maps: Chaos analysis and fractal control. Nonlinear Dyn. 111(6), 5889–5904 (2023)

    Google Scholar 

  11. Helal, M.A.: Soliton solution of some nonlinear partial differential equations and its applications in fluid mechanics. Chaos. Soliton. Fract. 13, 1917–1929 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Rui, W.: Separation method of semi-fixed variables together with dynamical system method for solving nonlinear time-fractional PDEs with higher-order terms. Nonlinear Dyn. 109(2), 943–961 (2022)

    Google Scholar 

  13. Chern, S.S.: Geometrical interpretation of the Sinh-Gordon equation. Ann. Pol. Math. 1, 63–69 (1981)

    MathSciNet  MATH  Google Scholar 

  14. Monvel, A.B., Khruslov, E.Y., Kotlyarov, V.P.: The Cauchy problem for the Sinh-Gordon equation and regular solitons. Inverse. Prob. 14, 1403 (1998)

    MathSciNet  MATH  Google Scholar 

  15. Yan, Z.: A Sinh-Gordon equation expansion method to construct doubly periodic solutions for nonlinear differential equations. Chaos. Soliton. Fract. 16, 291–297 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Sun, W.R., Deconinck, B.: Stability of elliptic solutions to the Sinh-Gordon equation. J. Nonlinear. Sci. 31, 1–23 (2021)

    MathSciNet  MATH  Google Scholar 

  17. Grauel, A.: Sinh-Gordon equation, Painlev\(\acute{e}\) property and B\(\ddot{a}\)cklund transformation. Phys. A. 132, 557–568 (1985)

    MathSciNet  Google Scholar 

  18. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press (1991)

    MATH  Google Scholar 

  19. Fring, A., Mussardo, G., Simonetti, P.: Form factors for integrable lagrangian field theories, the Sinh-Gordon model. Nucl. Phys. B. 393, 413–441 (1993)

    MathSciNet  MATH  Google Scholar 

  20. Yan, Z.: Jacobi elliptic function solutions of nonlinear wave equations via the new Sinh-Gordon equation expansion method. J. Phys. A Math. Theor. 36, 1961 (2003)

    MathSciNet  MATH  Google Scholar 

  21. Zhong, W.P., Belic, M.R., Petrovic, M.S.: Solitary and extended waves in the generalized Sinh-Gordon equation with a variable coefficient. Nonlinear Dyn. 76, 717–723 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Yang, X.L., Tang, J.S.: Travelling wave solutions for Konopelchenko–Dubrovsky equation using an extended Sinh-Gordon equation expansion method. Commun. Theor. Phys. 50, 1047 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Kumar, D., Manafian, J., Hawlader, F., Ranjbaran, A.: New closed form soliton and other solutions of the Kundu–Eckhaus equation via the extended Sinh-Gordon equation expansion method. Optik 160, 159–167 (2018)

    Google Scholar 

  24. Lu, D., Seadawy, A.R., Arshad, M.: Solitary wave and elliptic function solutions of Sinh-Gordon equation and its applications. Mod. Phys. Lett. B. 33, 1950436 (2019)

    MathSciNet  Google Scholar 

  25. Kumar, D., Joardar, A.K., Hoque, A., Paul, G.C.: Investigation of dynamics of nematicons in liquid crystals by extended Sinh-Gordon equation expansion method. Opt. Quant. Electron. 51, 1–36 (2019)

    Google Scholar 

  26. Irshad, A., Ahmed, N., Khan, U.: Optical solutions of Schrodinger equation using extended Sinh-Gordon equation expansion method. Front. Phys. Lausanne 8, 73 (2020)

    Google Scholar 

  27. Bezgabadi, A.S., Bolorizadeh, M.A.: Analytic combined bright-dark, bright and dark solitons solutions of generalized nonlinear Schrodinger equation using extended Sinh-Gordon equation expansion method. Results Phys. 30, 104852 (2021)

    Google Scholar 

  28. Jiong, S.: A direct method for solving Sine-Gordon type equations. Phys. Lett. A. 298, 133–139 (2003)

    MathSciNet  MATH  Google Scholar 

  29. Wazwaz, A.M.: Exact solutions to the double Sinh-Gordon equation by the tanh method and a variable separated ODE method. Comput. Math. Appl. 50, 1685–1696 (2005)

    MathSciNet  MATH  Google Scholar 

  30. Wazwaz, A.M.: The tanh method and a variable separated ODE method for solving double Sine-Gordon equation. Phys. Lett. A. 350, 367–370 (2006)

    MATH  Google Scholar 

  31. Wazwaz, A.M.: The tanh method for travelling wave solutions to the Zhiber–Shabat equation and other related equations. Commun. Nonlinear Sci. 13, 584–592 (2008)

    MathSciNet  MATH  Google Scholar 

  32. Kheiri, H., Jabbari, A.: Exact solutions for the double Sinh-Gordon and generalized form of the double Sinh-Gordon equations by using \((\frac{G^{\prime }}{G})\)-expansion method. Turk. J. Phys. 34, 73–82 (2010)

    Google Scholar 

  33. Magalakwe, G., Khalique, C.M.: New exact solutions for a generalized double Sinh-Gordon equation. Abstr. Appl. Anal. 2013, 1–5 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Magalakwe, G., Muatjetjeja, B., Khalique, C.M.: Generalized double Sinh-Gordon equation: symmetry reductions, exact solutions and conservation laws. Iran. J. Sci. Technol. A. 39, 289–296 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Hu, H.C., Lou, S.Y.: New interaction solutions of periodic waves and solitary waves for the (n+1)-dimensional double Sinh-Gordon equation. Phys. Scripta. 75, 34 (2006)

    MathSciNet  MATH  Google Scholar 

  36. Wazwaz, A.M.: One and two soliton solutions for the Sinh-Gordon equation in (1+1), (2+1) and (3+1) dimensions. Appl. Math. Lett. 25, 2354–2358 (2012)

    MathSciNet  MATH  Google Scholar 

  37. Chang, C.W., Liu, C.S.: An implicit Lie-group iterative scheme for solving the nonlinear Klein–Gordon and sine-Gordon equations. Appl. Math. Model. 40(2), 1157–1167 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Wazwaz, A.M.: New integrable (2+1) and (3+1)-dimensional Sinh-Gordon equations with constant and time-dependent coefficients. Phys. Lett. A. 384, 126529 (2020)

    MathSciNet  MATH  Google Scholar 

  39. Wang, G., Yang, K., Gu, H., Guan, F., Kara, A.H.: A (2+1)-dimensional Sine-Gordon and Sinh-Gordon equations with symmetries and kink wave solutions. Nucl. Phys. B. 953, 114956 (2020)

    MathSciNet  MATH  Google Scholar 

  40. Alrebdi, H.I., Raza, N., Arshed, S., Butt, A.R., Abdel-Aty, A.H., Cesarano, C., Eleuch, H.: A variety of new explicit analytical soliton solutions of q-Deformed Sinh-Gordon in (2+1)-dimensions. Symmetry. 14, 2425 (2022)

    Google Scholar 

  41. Li, X., Zhang, S., Wang, Y., Chen, H.: Analysis and application of the element-free Galerkin method for nonlinear Sine-Gordon and generalized Sinh-Gordon equations. Comput. Math. Appl. 71(8), 1655–1678 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Oruc, O.: A new numerical treatment based on Lucas polynomials for 1D and 2D Sinh-Gordon equation. Commun. Nonlinear Sci. 57, 14–25 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Arai, A.: Exactly solvable supersymmetric quantum mechanics. J. Math. Anal. Appl. 158, 63–79 (1991)

    MathSciNet  MATH  Google Scholar 

  44. Ali, K.K., Abdel-Aty, A.H.: An extensive analytical and numerical study of the generalized q-deformed Sinh-Gordon equation. J. Ocean. Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.05.034

    Article  Google Scholar 

  45. Raza, N., Arshed, S., Alrebdi, H.I., Abdel-Aty, A.H., Eleuch, H.: Abundant new optical soliton solutions related to q-deformed Sinh-Gordon model using two innovative integration architectures. Results Phys. 35, 105358 (2022)

    Google Scholar 

  46. Zhong, W.P., Zhong, W.Y., Belić, M.R., Yang, Z.: Excitations of nonlinear local waves described by the Sinh-Gordon equation with a variable coefficient. Phys. Lett. A. 384, 126264 (2020)

    MathSciNet  Google Scholar 

  47. Manoranjan, V.: Analytical solutions for the generalized Sine-Gordon equation with variable coefficients. Phys. Scripta. 96, 055218 (2021)

    Google Scholar 

  48. Alzaleq, L., Al-zaleq, D., Alkhushayni, S.: Traveling waves for the generalized Sinh-Gordon equation with variable Coefficients. Mathematics 10, 822 (2022)

    Google Scholar 

  49. Raza, N., Butt, A.R., Arshed, S., Kaplan, M.: A new exploration of some explicit soliton solutions of q-deformed Sinh-Gordon equation utilizing two novel techniques. Opt. Quant. Electron. 55, 200 (2023)

    Google Scholar 

  50. Eleuch, H.: Some analytical solitary wave solutions for the generalized q-Deformed Sinh-Gordon equation: \(\partial ^2\theta /\partial z\partial \xi =\alpha [\text{ sinh}_q(\beta \theta ^\gamma )]^p-\delta \). Adv. Math. Phys. 2018, 5242757 (2018)

    MATH  Google Scholar 

  51. Ali, K.K., Abdel-Aty, A.H., Eleuch, H.: New soliton solutions for the conformal time derivative q-deformed physical model. Results Phys. 42, 105993 (2022)

    Google Scholar 

  52. Zhou, K.Z.: \((\frac{G^{^{\prime }}}{G^{2}})\)-expansion Solutions to MBBM and OBBM Equations. J. Partial. Differ. Eq. 28, 158–166 (2015)

  53. Mohyud-Din, S.T., Bibi, S.: Exact solutions for nonlinear fractional differential equations using \((\frac{G^{^{\prime }}}{G^{2}})\)-expansion method. Alex. Eng. J. 57, 1003–1008 (2018)

    Google Scholar 

  54. Chen, H.Y., Zhu, Q.H., Qi, J.M.: Further results about the exact solutions of conformable space-time fractional Boussinesq equation (FBE) and breaking soliton (Calogero) equation. Results Phys. 37, 2211–3797 (2022)

    Google Scholar 

  55. Ali, K.K., Al-Harbi, N., Abdel-Aty, A.H.: Traveling wave solutions to (3+1) conformal time derivative generalized q-deformed Sinh-Gordon equation. Alex. Eng. J. 65, 233–243 (2023)

    Google Scholar 

  56. Raza, N., Salman, F., Butt, A.R., Gandarias, M.L.: Lie symmetry analysis, soliton solutions and qualitative analysis concerning to the generalized q-deformed Sinh-Gordon equation. Commun. Nonlinear Sci. 116, 106824 (2023)

    MathSciNet  MATH  Google Scholar 

  57. Ali, K.K.: Analytical and numerical study for the generalized q-deformed Sinh-Gordon equation. Nonlinear Eng. 12(1), 20220255 (2023)

    MathSciNet  Google Scholar 

  58. Kazmi, S.S., Jhangeer, A., Raza, N., Alrebdi, H.I., Abdel-Aty, A.H., Eleuch, H.: The Analysis of Bifurcation, Quasi-Periodic and Solitons Patterns to the New Form of the Generalized q-deformed Sinh-Gordon Equation. Symmetry. 15(7), 1324 (2023)

    Google Scholar 

  59. Ali, U., Ahmad, H., Baili, J., Botmart, T., Aldahlan, M.: Exact analytic wave solutions for space-time variable-order fractional modified equal width equation. Results Phys. 33, 105216 (2022)

    Google Scholar 

  60. Arshed, S., Raza, N., Rahman, R.U., Butt, A.R., Huang, W.H.: Sensitive behavior and optical solitons of complex fractional Ginzburg-Landau equation: a comparative paradigm. Results Phys. 28, 104533 (2021)

    Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China, Mr Jianming Qi (11326083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianming Qi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Appendix of Equation (13)

By (18), we deduce

$$\begin{aligned} \begin{aligned} {u}'({\xi })&= \left( {{a_1}+2{a_2}\left( {{{G'}\over {{G^2}}}}\right) -{\beta _1} {\left( {{{{G'}\over {{G^2}}}}}\right) ^{-2}}-2{\beta _2}\left( {{{{G'}\over {{G^2}}}}}\right) ^{-3}}\right) \left( {\sigma +\mu \left( {{{G'}\over {{G^2}}}}\right) +R{\left( {{{G'}\over {{G^2}}}}\right) ^2}}\right) , \end{aligned} \end{aligned}$$
(50)
$$\begin{aligned} {u}'^2({\xi })= & {} 4{a_{2}}^{2}{R}^{2}\left( \frac{G'}{G^2}\right) ^6+\left( 4{R}^{2}a_{1}a_{2}+8R{a_{2}}^{2}\mu \right) \left( \frac{G'}{G^2}\right) ^5+\bigg [{R}^{2}{a_{1}}^{2}+8a_{1}a_{2}\mu \,R+4{a_{2}}^{2}\\{} & {} \left( 2R\sigma +{\mu }^{2}\right) \bigg ]\left( \frac{G'}{G^2}\right) ^4+\left( -4\beta _{1}{R}^{2}a_{2}+2{a_{1}}^{2}\mu \,R+4a_{1}a_{2}\left( 2R\sigma +{\mu }^{2}\right) +8{a_{2}}^{2}\sigma \,\mu \right) \\{} & {} \left( \frac{G'}{G^2}\right) ^3+\bigg [{a_{1}}^{2}\left( 2R\sigma +{\mu }^{2}\right) +8a_{1}a_{2}\sigma \mu -\left( 2a_{1}\beta _{1}+8a_{2}\beta _{2}\right) {R}^{2}-8a_{2}\beta _{1}\mu \,R+4{a_{2}}^{2} \\ {}{} & {} {\sigma }^{2}\bigg ]\left( \frac{G'}{G^2}\right) ^2+\bigg [2{a_{1}}^{2}\sigma \mu -4{R}^{2}\beta _{2}a_{1}-2\left( 2a_{1}\beta _{1}+8a_{2}\beta _{2}\right) \mu \,R-4a_{2}\beta _{1}\left( 2R\sigma +{\mu }^{2}\right) \\ {}{} & {} +4a_{1}a_{2}{\sigma }^{2}\bigg ]\left( \frac{G'}{G^2}\right) +{R}^{2}{\beta _{1}}^{2}-8a_{1}\beta _{2}\mu \,R-8a_{2}\beta _{1}\sigma \mu +{a_{1}}^{2}{\sigma }^{2}-\bigg (2a_{1}\beta _{1} \\ {}{} & {} +8a_{2}\beta _{2}\bigg )\left( 2R\sigma +{\mu }^{2}\right) +\bigg [4{R}^{2}\beta _{1}\beta _{2}+2{\beta _{1}}^{2}\mu \,R-4a_{1}\beta _{2}\left( 2R\sigma +{\mu }^{2}\right) -2\bigg (2a_{1}\beta _{1} \\ {}{} & {} +8a_{2}\beta _{2}\bigg )\sigma \mu -4a_{2}\beta _{1}{\sigma }^{2}\bigg ]\left( \frac{G'}{G^2}\right) ^{-1}+[4{R}^{2}{\beta _{2}}^{2}+8\beta _{2}\beta _{1}\mu \,R+{\beta _{1}}^{2}\left( 2R\sigma +{\mu }^{2}\right) \end{aligned}$$
$$\begin{aligned} \begin{aligned}&-8a_{1}\beta _{2}\sigma \mu -\left( 2a_{1}\beta _{1}+8a_{2}\beta _{2}\right) {\sigma }^{2}]\left( \frac{G'}{G^2}\right) ^{-2}+[8{\beta _{2}}^{2}\mu \,R+4\beta _{2}\beta _{1}\left( 2R\sigma +{\mu }^{2}\right) \\ {}&+2{\beta _{1}}^{2}\sigma \mu -4a_{1}\beta _{2}{\sigma }^{2}]\left( \frac{G'}{G^2}\right) ^{-3}+\left[ 4{\beta _{2}}^{2}\left( 2R\sigma +{\mu }^{2}\right) +8\beta _{2}\beta _{1}\sigma \mu +{\beta _{1}}^{2}{\sigma }^{2}\right] \\&\left( \frac{G'}{G^2}\right) ^{-4}+\left( 4\beta _{1}\beta _{2}{\sigma }^{2}+8{\beta _{2}}^{2}\mu \sigma \right) \left( \frac{G'}{G^2}\right) ^{-5}+4{\beta _{2}}^{2}{\sigma }^{2}\left( \frac{G'}{G^2}\right) ^{-6}, \end{aligned} \end{aligned}$$
(51)
$$\begin{aligned} \begin{aligned} {u}^2({\xi })&= \left( a_0^2+2a_1\beta _1+2a_2\beta _2\right) +\left( 2a_0a_1+2a_2\beta _1\right) \left( \frac{G'}{G^2}\right) +\left( a^2_1+2a_0a_2\right) \left( \frac{G'}{G^2}\right) ^2 \\ {}&\quad +2a_1a_2\left( \frac{G'}{G^2}\right) ^3+a_2^2\left( \frac{G'}{G^2}\right) ^4+\left( 2a_0\beta _1+2a_1\beta _2\right) \left( \frac{G'}{G^2}\right) ^{-1}-\left( \beta ^2_1+2a_0\beta _2\right) \left( \frac{G'}{G^2}\right) ^{-2} \\ {}&\quad +2\beta _1\beta _2\left( \frac{G'}{G^2}\right) ^{-3}+\beta _2^2\left( \frac{G'}{G^2}\right) ^{-4}, \end{aligned} \end{aligned}$$
(52)
$$\begin{aligned} \begin{aligned} {u}^3({\xi })&=a_2^3\left( \dfrac{G'}{G^2}\right) ^6+3a_1\left( \dfrac{G'}{G^2}\right) ^5a_2^2+\left( a_0a_2^2+2a_1^2a_2+a_2\left( 2a_0a_2+a_1^2\right) \right) \left( \dfrac{G'}{G^2}\right) ^4+\bigg (\beta _1a_2^2 \\ {}&\quad +2a_0a_1a_2+a_1\left( 2a_0a_2+a_1^2\right) +a_2\left( 2a_0a_1+2a_2\beta _1\right) \bigg )\left( \frac{G'}{G^2}\right) ^3+(\beta _{_2}a_{_2}^{2}+2\beta _{_1}a_{_1}a_{_2} \\ {}&\quad +a_{_0}\left( 2a_{_0}a_{_2}+a_{_1}^{2}\right) +a_1\left( 2a_oa_1+2a_2\beta _1\right) +a_2\left( a_o^2+2a_1\beta _1+2a_2\beta _2\right) \left( \frac{G'}{G^2}\right) ^2 \\ {}&\quad +(2\beta _{2}a_{1}a_{2}+\beta _{1}\left( 2a_{0}a_{2}+{a_{1}}^{2}\right) +a_{0}\left( 2a_{0}a_{1}+2a_{2}\beta _{1}\right) +a_{1}\bigg ({a_{0}}^{2}+2a_{1}\beta _{1} \\ {}&\quad +2a_{2}\beta _{2}\bigg )+a_{2}\left( 2a_{0}\beta _{1}+2a_{1}\beta _{2}\right) \left( \frac{G'}{G^2}\right) +\beta _{2}\left( 2a_{0}a_{2}+{a_{1}}^{2})+\beta _{1}(2a_{0}a_{1}+2a_{2}\beta _{1}\right) \\ {}&\quad +a_{0}\left( {a_{0}}^{2}+2a_{1}\beta _{1}+2a_{2}\beta _{2}\right) +a_{1}\left( 2a_{0}\beta _{1}+2a_{1}\beta _{2}\right) +a_{2}(2a_{0}\beta _{2}+{\beta _{1}}^{2})+(\beta _{2} \\ {}&\quad \left( 2a_{0}a_{1}+2a_{2}\beta _{1}\right) +\beta _{1}\left( {a_{0}}^{2}+2a_{1}\beta _{1}+2a_{2}\beta _{2}\right) +a_{0}(2a_{0}\beta _{1}+2a_{1}\beta _{2})+a_{1}(2a_{0}\beta _{2} \\ {}&\quad +{\beta _{1}}^{2})+2a_{2}\beta _{2}\beta _{1})\left( \frac{G'}{G^2}\right) ^{-1}+(\beta _{2}\left( {a_{0}}^{2}+2a_{1}\beta _{1}+2a_{2}\beta _{2}\right) +\beta _{1}\left( 2a_{0}\beta _{1}+2a_{1}\beta _{2}\right) \\ {}&\quad +a_{0}\left( 2a_{0}\,\beta _{2}+{\beta _{1}}^{2}\right) +2a_{1}\beta _{2}\beta _{1}+a_{2}{\beta _{2}}^{2})\left( \frac{G'}{G^2}\right) ^{-2}+(8{\beta _{2}}^{2}\mu \,R+4\beta _{2}\beta _{1} \\ {}&\quad \left( 2R\sigma +{\mu }^{2}\right) +2{\beta _{1}}^{2}\sigma \mu -4a_{1}\beta _{2}{\sigma }^{2}\left( \frac{G'}{G^2}\right) ^{-3})+(\beta _{2}(2a_{0}\beta _{2}+{\beta _{1}}^{2}) \\ {}&\quad +2{\beta _{1}}^{2}\beta _{2}+a_{0}{\beta _{2}}^{2}\left( \frac{G'}{G^2}\right) ^{-4}))+\left( 3\beta _{1}{\beta _{2}}^{2}\right) \left( \frac{G'}{G^2}\right) ^{-5})+\left( {\beta _{2}}^{3}\right) \left( \frac{G'}{G^2}\right) ^{-6}). \end{aligned} \end{aligned}$$
(53)

Next, we substitute Eqs. (18), (50), (51), (52) and (53) into Eq. (13), and rearrange the terms with the same power of \(\left( \frac{G'}{G^2}\right) \) together. We then isolate the undetermined coefficients and set them to zero, resulting in the following equations:

$$\begin{aligned} \left\{ \begin{aligned}&\left( \frac{G'(\xi )}{G^2(\xi )}\right) ^{6}:4({\left( k^2\sin ^2\theta \right) -\left( \rho ^2\cos ^2\theta \right) }){a_{2}}^{2}{R}^{2}+{a_{2}}^{3}=0,\quad \left( \frac{G'(\xi )}{G^2(\xi )}\right) ^{-6}:4({\left( k^2\sin ^2\theta \right) -\left( \rho ^2\cos ^2\theta \right) }){\beta _{2}}^{2}{\sigma }^{2}+{\beta _{2}}^{3}=0,\\&\left( \frac{G'(\xi )}{G^2(\xi )}\right) ^{5}:\left( {\left( k^2\sin ^2\theta \right) -\left( \rho ^2\cos ^2\theta \right) }^{2}\right) (4{R}^{2}a_{1}a_{2}+8{a_{2}}^{2}\mu \,R) +3a_{1}{a_{2}}^{2}=0,\\&\left( \frac{G'(\xi )}{G^2(\xi )}\right) ^{-5}: \left( {\left( k^2\sin ^2\theta \right) -\left( \rho ^2\cos ^2\theta \right) }\right) \left( 4\beta _{2}\beta _{1}{\sigma }^{2}+8{\beta _{2}}^{2}\sigma \mu \right) +3\beta _{1}{\beta _{2}}^{2}=0,\\&\left( \frac{G'(\xi )}{G^2(\xi )}\right) ^{4}: \left( {\left( k^2\sin ^2\theta \right) -\left( \rho ^2\cos ^2\theta \right) }\right) \left( {R}^{2}{a_{1}}^{2}+8a_{1}a_{2}\mu \,R+4{a_{2}}^{2}\left( 2\sigma \,R+{\mu }^{2}\right) \right) +2{a_{2}}^{2}K+a_{0}{a_{2}}^{2}+2{a_{1}}^{2}a_{2}+a_{2}\left( 2a_{0}a_{2}+{a_{1}}^{2}\right) =0,\\&\left( \frac{G'(\xi )}{G^2(\xi )}\right) ^{-4}:\left( {\left( k^2\sin ^2\theta \right) -\left( \rho ^2\cos ^2\theta \right) }\right) \left( 4{\beta _{2}}^{2}\left( 2\sigma \,R+{\mu }^{2}\right) +8\beta _{2}\beta _{1}\sigma \mu +{\beta _{1}}^{2}{\sigma }^{2}\right) +2{\beta _{2}}^{2}K+\beta _{2}\left( 2a_{0}\beta _{2}+{\beta _{1}}^{2}\right) +2{\beta _{1}}^{2}\beta _{2}+a_{0}{\beta _{2}}^{2}=0,\\&\left( \frac{G'(\xi )}{G^2(\xi )}\right) ^{3}:\left( {\left( k^2\sin ^2\theta \right) -\left( \rho ^2\cos ^2\theta \right) }\right) \left( -4\beta _{1}{R}^{2}a_{2}+2{a_{1}}^{2}\mu \,R+4a_{1}a_{2}(2\sigma \,R+{\mu }^{2}\right) \\ {}&+8{a_{2}}^{2}\sigma \mu )+4a_{1}a_{2}K+\beta _{1}{a_{2}}^{2}+2a_{0}a_{1}a_{2}+a_{1}(2a_{0}a_{2}+{a_{1}}^{2})+a_{2}(2a_{0}a_{1}+2a_{2}\beta _{1}) =0,\\&\left( \frac{G'(\xi )}{G^2(\xi )}\right) ^{-3}:\left( {\left( k^2\sin ^2\theta \right) -\left( \rho ^2\cos ^2\theta \right) }\right) \left( 8{\beta _{2}}^{2}\mu \,R+4\beta _{2}\beta _{1}\bigg (2\sigma \,R+{\mu }^{2}\right) +2{\beta _{1}}^{2}\sigma \mu \\ {}&-4a_{1}\beta _{2}{\sigma }^{2}\bigg )+4\beta _{2}\beta _{1}K+\beta _{2}\left( 2a_{0}\beta _{1}+2a_{1}\beta _{2}\right) +\beta _{1}\left( 2a_{0}\beta _{2}+{\beta _{1}}^{2}\right) +2a_{0}\beta _{2}\beta _{1}+a_{1}{\beta _{2}}^{2} =0,\\&\left( \frac{G'(\xi )}{G^2(\xi )}\right) ^{2}:\left( {\left( k^2\sin ^2\theta \right) -\left( \rho ^2\cos ^2\theta \right) }\right) (\left( -2\,a_{1}\beta _{1}-8a_{2}\beta _{2}\right) {R}^{2}-8a_{2}\beta _{1}\mu \,R+{a_{1}}^{2} \\ {}&\left( 2\sigma \,R+{\mu }^{2}\right) +8a_{1}a_{2}\sigma \mu +4{a_{2}}^{2}{\sigma }^{2})+2K\left( 2a_{0}a_{2}+{a_{1}}^{2}\right) +a_{2}q+\beta _{2}{a_{2}}^{2}+2\beta _{1}a_{1}a_{2} \\ {}&+a_{0}\left( 2a_{0}a_{2}+{a_{1}}^{2}\right) +a_{1}\left( 2a_{0}a_{1}+2a_{2}\beta _{1}\right) +a_{2}\left( {a_{0}}^{2}+2a_{1}\beta _{1}+2a_{2}\beta _{2}\right) =0,\\&\left( \frac{G'(\xi )}{G^2(\xi )}\right) ^{-2}:\left( {\left( k^2\sin ^2\theta \right) -\left( \rho ^2\cos ^2\theta \right) }\right) (4{R}^{2}{\beta _{2}}^{2}+8\beta _{2}\beta _{1}\mu \,R+{\beta _{1}}^{2}\left( 2\sigma \,R+{\mu }^{2}\right) \\ {}&-8a_{1}\beta _{2}\sigma \mu -\left( 2a_{1}\beta _{1}+8a_{2}\beta _{2}\right) {\sigma }^{2})+2K\left( 2a_{0}\beta _{2}+{\beta _{1}}^{2}\right) +2a_{1}\beta _{2}\beta _{1}+a_{2}{\beta _{2}}^{2}+\beta _{2}q \\ {}&+\beta _{1}\left( 2a_{0}\beta _{1}+2a_{1}\beta _{2}\right) +a_{0}(2a_{0}\beta _{2}+{\beta _{1}}^{2})+\beta _{2}\left( {a_{0}}^{2}+2a_{1}\beta _{1}+2a_{2}\beta _{2}\right) =0,\\&\left( \frac{G'(\xi )}{G^2(\xi )}\right) :\left( {\left( k^2\sin ^2\theta \right) -\left( \rho ^2\cos ^2\theta \right) }\right) \left( -4{R}^{2}\beta _{2}a_{1}+2(-2a_{1}\beta _{1}-8a_{2}\beta _{2}\right) \mu \,R-4a_{2}\beta _{1} \\ {}&\left( 2\sigma \,R+{\mu }^{2})+2{a_{1}}^{2}\sigma \mu +4a_{1}a_{2}{\sigma }^{2}\right) +2K\left( 2a_{0}a_{1}+2a_{2}\beta _{1}\right) +a_{1}q+2\beta _{2}a_{1}a_{2} \\ {}&+\beta _{1}\left( 2a_{0}a_{2}+{a_{1}}^{2}\right) +a_{0}\left( 2a_{0}a_{1}+2a_{2}\beta _{1}\right) +a_{1}\left( {a_{0}}^{2}+2a_{1}\beta _{1}+2a_{2}\beta _{2}\right) +a_{2}(2a_{0}\beta _{1}+2a_{1}\beta _{2})=0,\\&\left( \frac{G'(\xi )}{G^2(\xi )}\right) ^{-1}:\left( {\left( k^2\sin ^2\theta \right) -\left( \rho ^2\cos ^2\theta \right) }\right) (4{R}^{2}\beta _{1}\beta _{2}+2{\beta _{1}}^{2}\mu \,R-4a_{1}\beta _{2}\left( 2\sigma \,R+{\mu }^{2}\right) \\ {}&-2\left( 2a_{1}\beta _{1}+8a_{2}\beta _{2}\right) \sigma \mu -4a_{2}\beta _{1}{\sigma }^{2})+2K\left( 2a_{0}\beta _{1}+2a_{1}\beta _{2}\right) +q\beta _{1}+\beta _{2}\bigg (2a_{0}a_{1} \\ {}&+2a_{2}\beta _{1}\bigg )+\beta _{1}\left( {a_{0}}^{2}+2a_{1}\beta _{1}+2a_{2}\beta _{2}\right) +a_{0}\left( 2a_{0}\beta _{1}+2a_{1}\beta _{2}\right) +a_{1}\left( 2a_{0}\beta _{2}+{\beta _{1}}^{2}\right) +2a_{2}\beta _{2}\beta _{1}=0,\\&\left( \frac{G'(\xi )}{G^2(\xi )}\right) ^{0}:\left( {\left( k^2\sin ^2\theta \right) -\left( \rho ^2\cos ^2\theta \right) }\right) ({R}^{2}{\beta _{1}}^{2}-8a_{1}\beta _{2}\mu \,R-\left( 2a_{1}\beta _{1}+8a_{2}\beta _{2}\right) \bigg (2\sigma \,R \\ {}&+{\mu }^{2}\bigg )-8a_{2}\beta _{1}\sigma \mu +{a_{1}}^{2}{\sigma }^{2})+2K\left( {a_{0}}^{2}+2a_{1}\beta _{1}+2a_{2}\beta _{2}\right) +qa_{0}+\beta _{2}(2a_{0}a_{2}+{a_{1}}^{2}) \\ {}&+\beta _{1}\left( 2a_{0}a_{1}+2a_{2}\beta _{1}\right) +a_{0}\left( {a_{0}}^{2}+2a_{1}\beta _{1}+2a_{2}\beta _{2}\right) +a_{1}\left( 2a_{0}\beta _{1}+2a_{1}\beta _{2}\right) +a_{2}\bigg (2a_{0}\beta _{2}+{\beta _{1}}^{2}\bigg )=0. \end{aligned} \right. \end{aligned}$$
(54)

B Appendix of Equation (17)

By (18), we deduce

$$\begin{aligned} {u}''({\xi })= & {} 6a_{2}\left( \frac{G'}{G^2}\right) ^{4}{R}^{2}+\left( 2a_{1}{R}^{2}+10a_{2}\mu \,R\right) \left( \frac{G'}{G^2}\right) ^{3}+\left( 3a_{1}\mu \,R+4a_{2}\left( 2R\sigma +{\mu }^{2}\right) \right) \nonumber \\ {}{} & {} \left( \frac{G'}{G^2}\right) ^{2}+\left( a_{1}\left( 2R\sigma +{\mu }^{2}\right) +6a_{2}\mu \sigma \right) \left( \frac{G'}{G^2}\right) +2\beta _{2}{R}^{2}+\beta _{1}\mu \,R+a_{1}\mu \sigma +2a_{2}{\sigma }^{2}\nonumber \\{} & {} +\left( 6\beta _{2}\mu \,R+\beta _{1}\left( 2R\sigma +{\mu }^{2}\right) \right) \left( {\frac{G'}{G^2}}\right) ^{-1}+\left( 4\beta _{2}\left( 2R\sigma +{\mu }^{2}\right) +3\beta _{1}\mu \sigma \right) \left( \frac{G'}{G^2}\right) ^{-2}+\left( 2\beta _{1}{\sigma }^{2}+10\beta _{2}\mu \sigma \right) \left( \frac{G'}{G^2}\right) ^{-3}+6\left( \beta _{2}{\sigma }^{2}\right) \left( \frac{G'}{G^2}\right) ^{-4}. \end{aligned}$$
(55)

Next, we substitute Eqs. (18), (51), (53) and (55) into Eq. (17), and rearrange the terms with the same power of \(\left( \frac{G'}{G^2}\right) \) together. We then isolate the undetermined coefficients and set them to zero, resulting in the following equations:

$$\begin{aligned} \left\{ \begin{aligned}&\left( \frac{G'(\xi )}{G^2(\xi )}\right) ^{6}:-4\left( \left( \rho ^2\cos ^2\theta \right) -\left( k^2\sin ^2\theta \right) \right) {a_{2}}^{2}{R}^{2}+{a_{2}}^{3}=0, \left( \frac{G'(\xi )}{G^2(\xi )}\right) ^{-6}:-4\left( \left( \rho ^2\cos ^2\theta \right) -\left( k^2\sin ^2\theta \right) \right) {\beta _{2}}^{2}{\sigma }^{2}+{\beta _{2}}^{3}=0,\\&\left( \frac{G'(\xi )}{G^2(\xi )}\right) ^{5}:2\left( \left( \rho ^2\cos ^2\theta \right) -\left( k^2\sin ^2\theta \right) \right) \left( 4{R}^{2}a_{1}a_{2}+8R{a_{2}}^{2}\mu \right) +3a_{1}{a_{2}}^{2}-2\left( \left( \rho ^2\cos ^2\theta \right) -\left( k^2\sin ^2\theta \right) \right) \left( 6{R}^{2}a_{1}a_{2}+a_{2}\left( 2{R}^{2}a_{1}+10Ra_{2}\mu \right) \right) =0,\\&\left( \frac{G'(\xi )}{G^2(\xi )}\right) ^{-5}: 2\left( \left( \rho ^2\cos ^2\theta \right) -\left( k^2\sin ^2\theta \right) \right) \left( 4\beta _{2}\beta _{1}{\sigma }^{2}+8{\beta _{2}}^{2}\sigma \mu \right) +3\beta _{1}{\beta _{2}}^{2}-2\left( \left( \rho ^2\cos ^2\theta \right) -\left( k^2\sin ^2\theta \right) \right) \left( \beta _{2}(2\beta _{1}{\sigma }^{2}+10\beta _{2}\sigma \mu \right) +6\beta _{2}\beta _{1}{\sigma }^{2})=0,\\&\left( \frac{G'(\xi )}{G^2(\xi )}\right) ^{4}: 2\left( \left( \rho ^2\cos ^2\theta \right) -\left( k^2\sin ^2\theta \right) \right) \left( {a_{1}}^{2}{R}^{2}+8a_{1}Ra_{2}\mu +4{a_{2}}^{2}\left( 2R\sigma +{\mu }^{2}\right) \right) \\ {}&+a_{0}{a_{2}}^{2}+2{a_{1}}^{2}a_{2}+a_{2}\left( 2a_{0}a_{2}+{a_{1}}^{2}\right) -2\left( \left( \rho ^2\cos ^2\theta \right) -\left( k^2\sin ^2\theta \right) \right) (6a_{2}a_{0}{R}^{2} +a_{1}\left( 2{R}^{2}a_{1}+10Ra_{2}\mu \right) +a_{2}\left( 3a_{1}\mu \,R+4a_{2}\left( 2R\sigma +{\mu }^{2}\right) \right) )=0,\\&\left( \frac{G'(\xi )}{G^2(\xi )}\right) ^{-4}:2\left( \left( \rho ^2\cos ^2\theta \right) -\left( k^2\sin ^2\theta \right) \right) \left( 4{\beta _{2}}^{2}\left( 2R\sigma +{\mu }^{2}\right) +8\beta _{2}\beta _{1}\sigma \mu +{\beta _{1}}^{2}{\sigma }^{2}\right) +\beta _{2}\left( 2\beta _{2}a_{0}+{\beta _{1}}^{2}\right) +2{\beta _{1}}^{2}\beta _{2}+a_{0}{\beta _{2}}^{2} \\ {}&-2\left( \left( \rho ^2\cos ^2\theta \right) -\left( k^2\sin ^2\theta \right) \right) \bigg (\beta _{2}\bigg (4\beta _{2}\bigg (2R\sigma +{\mu }^{2}\bigg )+3\beta _{1}\mu \sigma \bigg )+\beta _{1}\left( 2\beta _{1}{\sigma }^{2}+10\beta _{2}\sigma \mu \right) +6\beta _{2}a_{0}{\sigma }^{2}\bigg )=0,\\&\left( \frac{G'(\xi )}{G^2(\xi )}\right) ^{3}:2\left( \left( \rho ^2\cos ^2\theta \right) -\left( k^2\sin ^2\theta \right) \right) \left( -4\beta _{1}{R}^{2}a_{2}+2R{a_{1}}^{2}\mu +4a_{2}a_{1}(2R\sigma +{\mu }^{2}\right) \\ {}&+8{a_{2}}^{2}\sigma \mu )+\beta _{1}{a_{2}}^{2}+2a_{0}a_{2}a_{1}+a_{1}(2a_{0}a_{2}+{a_{1}}^{2})+a_{2}(2a_{0}a_{1}+2a_{2}\beta _{1}) -2\left( \left( \rho ^2\cos ^2\theta \right) -\left( k^2\sin ^2\theta \right) \right) (6\beta _{1}{R}^{2}a_{2}+a_{0}\left( 2{R}^{2}a_{1}+10Ra_{2}\mu \right) \\ {}&+a_{1}\left( 3a_{1}\mu \,R+4a_{2}\left( 2R\sigma +{\mu }^{2}\right) \right) +a_{2}\left( a_{1}\left( 2R\sigma +{\mu }^{2})+6a_{2}\mu \sigma \right) \right) =0,\\&\left( \frac{G'(\xi )}{G^2(\xi )}\right) ^{-3}:2(\left( \rho ^2\cos ^2\theta \right) -\left( k^2\sin ^2\theta \right) )(8R{\beta _{2}}^{2}\mu +4\beta _{2}\beta _{1}(2R\sigma +{\mu }^{2})+2{\beta _{1}}^{2}\sigma \mu \\ {}&-4\beta _{2}{\sigma }^{2}a_{1})+\beta _{2}\left( 2\beta _{1}a_{0}+2a_{1}\beta _{2}\right) +\beta _{1}\left( 2\beta _{2}a_{0}+{\beta _{1}}^{2}\right) +2a_{0}\beta _{2}\beta _{1}+a_{1}{\beta _{2}}^{2} -2\left( \left( \rho ^2\cos ^2\theta \right) -\left( k^2\sin ^2\theta \right) \right) \left( \beta _{2}\bigg (6\beta _{2}\mu \,R+\beta _{1}\left( 2R\sigma +{\mu }^{2}\right) \right) \\ {}&+\beta _{1}\left( 4\beta _{2}\left( 2R\sigma +{\mu }^{2}\right) +3\beta _{1}\mu \sigma \right) +a_{0}\left( 2\beta _{1}{\sigma }^{2}+10\beta _{2}\sigma \mu \right) +6\beta _{2}{\sigma }^{2}a_{1}\bigg )=0,\\&\left( \frac{G'(\xi )}{G^2(\xi )}\right) ^{2}:2\left( \left( \rho ^2\cos ^2\theta \right) -\left( k^2\sin ^2\theta \right) \right) (\left( -2a_{1}\beta _{1}-8a_{2}\beta _{2}\right) {R}^{2}-8R\beta _{1}a_{2}\mu +{a_{1}}^{2}\left( 2R\sigma +{\mu }^{2}\right) +8a_{2}a_{1}\sigma \mu +4{\sigma }^{2}{a_{2}}^{2})+{q}^{2}a_{2}+\beta _{2}{a_{2}}^{2}+2\beta _{1}a_{1}a_{2} \\ {}&+a_{0}\left( 2a_{0}a_{2}+{a_{1}}^{2}\right) +a_{1}\left( 2a_{0}a_{1}+2a_{2}\beta _{1}\right) +a_{2}\left( {a_{0}}^{2}+2a_{1}\beta _{1}+2a_{2}\beta _{2}\right) -2\left( \left( \rho ^2\cos ^2\theta \right) -\left( k^2\sin ^2\theta \right) \right) \left( 6a_{2}\beta _{2}{R}^{2}+\beta _{1}(2{R}^{2}a_{1}+10Ra_{2}\mu \right) \\ {}&+a_{0}\bigg (3a_{1}\mu \,R+4a_{2}\left( 2R\sigma +{\mu }^{2}\right) )+a_{1}(a_{1}\left( 2R\sigma +{\mu }^{2}\right) +6a_{2}\mu \sigma \bigg )+a_{2}\bigg (2{R}^{2}\beta _{2}+\beta _{1}\mu \,R+a_{1}\mu \sigma +2a_{2}{\sigma }^{2}\bigg ))=0,\\&\left( \frac{G'(\xi )}{G^2(\xi )}\right) ^{-2}:2\left( \left( \rho ^2\cos ^2\theta \right) -\left( k^2\sin ^2\theta \right) \right) (4{R}^{2}{\beta _{2}}^{2}+8\beta _{1}\beta _{2}\mu \,R+{\beta _{1}}^{2}\left( 2R\sigma +{\mu }^{2}\right) -8a_{1}\beta _{2}\sigma \mu -\left( 2a_{1}\beta _{1}+8a_{2}\beta _{2}\right) {\sigma }^{2})+{q}^{2}\beta _{2} \\ {}&+\beta _{2}\left( {a_{0}}^{2}+2a_{1}\beta _{1}+2a_{2}\beta _{2}\right) +\beta _{1}\left( 2\beta _{1}a_{0}+2a_{1}\beta _{2}\right) +a_{0}\left( 2\beta _{2}a_{0}+{\beta _{1}}^{2}\right) +2a_{1}\beta _{2}\beta _{1}+a_{2}{\beta _{2}}^{2}-2\bigg (\left( \rho ^2\cos ^2\theta \right) -\left( k^2\sin ^2\theta \right) \bigg ) \\ {}&\left( \beta _{2}(2{R}^{2}\beta _{2}+\beta _{1}\mu \,R+a_{1}\mu \sigma +2a_{2}{\sigma }^{2}\right) +\beta _{1}(6\beta _{2}\mu \,R+\beta _{1}\left( 2R\sigma +{\mu }^{2}\right) )+a_{0}(4\beta _{2}(2R\sigma +{\mu }^{2})3\beta _{1}\mu \sigma )+a_{1}(2\beta _{1}{\sigma }^{2}+10\beta _{2}\sigma \mu ) +6a_{2}\beta _{2}{\sigma }^{2})=0,\\&\left( \frac{G'(\xi )}{G^2(\xi )}\!\right) \!:2\left( \left( \rho ^2\cos ^2\theta \right) \!-\!\left( k^2\sin ^2\theta \right) \right) \bigg (-4{R}^{2}\beta _{2}a_{1}-2\left( 2a_{1}\beta _{1}\!+\!8a_{2}\beta _{2}\right) \mu \,R\!-\!4a_{2}\beta _{1}\left( 2R\sigma \!+\!{\mu }^{2}\right) \!+\!2{a_{1}}^{2}\mu \sigma \!+\!4{\sigma }^{2}a_{1}a_{2}\bigg )\!+\!{q}^{2}a_{1}\!+\! 2\beta _{2}a_{1}a_{2} \\ {}&+\beta _{1}\left( 2a_{0}a_{2}\!+\!{a_{1}}^{2}\right) +a_{0}(2a_{0}a_{1}+2a_{2}\beta _{1})+a_{1}({a_{0}}^{2}+2a_{1}\beta _{1}+2a_{2}\beta _{2})+a_{2}(2\beta _{1}a_{0}+2a_{1}\beta _{2}) -2(\left( \rho ^2\cos ^2\theta \right) -\left( k^2\sin ^2\theta \right) )(\beta _{2}\left( 2{R}^{2}a_{1}+10Ra_{2}\mu \right) \\ {}&+\beta _{1}\bigg (a_{1}\mu \,R+4a_{2}\bigg (2R\sigma +{\mu }^{2}\bigg )\bigg )+a_{0}\left( a_{1}\left( 2R\sigma +{\mu }^{2}\right) +6a_{2}\mu \sigma \right) +a_{1}\left( 2{R}^{2}\beta _{2}+\beta _{1}\mu \,R+a_{1}\mu \sigma +2a_{2}{\sigma }^{2}\right) +a_{2}\left( 6\beta _{2}\mu \,R+\beta _{1}\left( 2R\sigma +{\mu }^{2}\right) \right) )=0,\\ \end{aligned} \right. \end{aligned}$$
(56)
$$\begin{aligned} \left\{ \begin{aligned}&\left( \frac{G'(\xi )}{G^2(\xi )}\right) ^{-1}:2\left( \left( \rho ^2\cos ^2\theta \right) -\left( k^2\sin ^2\theta \right) \right) (4\beta _{1}{R}^{2}\beta _{2}+2{\beta _{1}}^{2}\mu \,R-4a_{1}\beta _{2}\left( 2R\sigma +{\mu }^{2}\right) -2(2a_{1}\beta _{1}+8a_{2}\beta _{2})\mu \sigma -4a_{2}\beta _{1}{\sigma }^{2})+{q}^{2}\beta _{1}+\beta _{2}(2a_{0}a_{1} \\ {}&+2a_{2}\beta _{1})+\beta _{1}({a_{0}}^{2}+2a_{1}\beta _{1} +2a_{2}\beta _{2})+a_{0}(2\beta _{1}a_{0}+2a_{1}\beta _{2})+a_{1}(2\beta _{2}a_{0}+{\beta _{1}}^{2})+2a_{2}\beta _{2}\beta _{1}-2(\left( \rho ^2\cos ^2\theta \right) -\left( k^2\sin ^2\theta \right) )(\beta _{2}(a_{1}\left( 2R\sigma +{\mu }^{2}\right) \\ {}&+6a_{2}\mu \sigma )+\beta _{1}(2{R}^{2}\beta _{2}+\beta _{1}\mu \,R+a_{1}\mu \sigma +2a_{2}{\sigma }^{2}) +a_{0}(6\beta _{2}\mu \,R+\beta _{1}\left( 2R\sigma +{\mu }^{2}\right) )+a_{1}(4\beta _{2}(2R\sigma +{\mu }^{2})+3\beta _{1}\mu \sigma )\\&+a_{2}(2\beta _{1}{\sigma }^{2} +10\beta _{2}\sigma \mu ))=0,\left( \frac{G'(\xi )}{G^2(\xi )}\right) ^{0}:2\left( \left( \rho ^2\cos ^2\theta \right) -\left( k^2\sin ^2\theta \right) \right) \\&\times \bigg ({R}^{2}{\beta _{1}}^{2}-8\beta _{2}\mu \,a_{1}R-\left( 2a_{1}\beta _{1}+8a_{2}\beta _{2}\right) \left( 2R\sigma +{\mu }^{2}\right) -8a_{2}\sigma \beta _{1}\mu +{a_{1}}^{2}{\sigma }^{2}\bigg )+{q}^{2}a_{0}+\beta _{2}(2a_{0}a_{2}+{a_{1}}^{2})+\beta _{1}(2a_{0}a_{1}+2a_{2}\beta _{1}) \\ {}&+a_{0}\left( {a_{0}}^{2}+2a_{1}\beta _{1}+2a_{2}\beta _{2}\right) +a_{1}\left( 2\beta _{1}a_{0}+2a_{1}\beta _{2}\right) +a_{2}\left( 2\beta _{2}a_{0}+{\beta _{1}}^{2}\right) \bigg (\left( \rho ^2\cos ^2\theta \right) -\left( k^2\sin ^2\theta \right) \bigg )(\beta _{2}\left( 3a_{1}\mu \,R+4a_{2}\left( 2R\sigma +{\mu }^{2}\right) \right) \\ {}&+\beta _{1}\left( a_{1}\left( 2R\sigma +{\mu }^{2}\right) +6a_{2}\mu \sigma \right) +a_{0}\left( 2{R}^{2}\beta _{2}+\beta _{1}\mu \,R+a_{1}\mu \sigma +2a_{2}{\sigma }^{2}\right) +a_{1}\left( 6\beta _{2}\mu \,R+\beta _{1}\left( 2R\sigma +{\mu }^{2}\right) \right) +a_{2}\left( 4\beta _{2}\left( 2R\sigma +{\mu }^{2}\right) +3\beta _{1}\mu \sigma \right) )=0. \end{aligned} \right. \end{aligned}$$
(57)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, L., Qi, J. & Sun, Y. Further physical study about solution structures for nonlinear q-deformed Sinh–Gordon equation along with bifurcation and chaotic behaviors. Nonlinear Dyn 111, 20165–20199 (2023). https://doi.org/10.1007/s11071-023-08882-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08882-0

Keywords

Navigation