Skip to main content
Log in

Bifurcations and limit cycle prediction of rotor systems with fluid-film bearings using center manifold reduction

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Many rotating machines utilize a fluid-type bearing. Despite their reliability and high load capacity, these bearings often show instabilities due to the interaction between the fluid media and the rotating shaft. These instabilities, known as oil-whirl and oil-whip, occur due to a Hopf bifurcation; being the parameter the shaft speed. Identifying the type of bifurcation, either sub-critical or super-critical, is an important task to determine the safety of the machines near the instability speed, and it tells whether one experiences oil-whip or oil-whirl. This work presents an approach, based on the center manifold reduction (CMR) method, to obtain limit cycles near Hopf bifurcations of rotors supported on fluid-film bearings. The basis of the method is the obtention of the center manifold of the system, which allows one to assess the type of bifurcation at hand. To obtain the center manifold, the parameterization method for invariant manifolds is used, which is a powerful tool to obtain invariant manifolds of high-dimensional dynamical systems. The proposed method is evaluated by comparing its results with an open-source numerical continuation package (MATCONT) in two systems: a simple and a realistic rotor system. The results show that the CMR, together with the parameterization method, can be used reliably to learn if the rotor system presents sub- or super-critical bifurcations, to perform parametric studies with different bearing properties, and also to predict the amplitude of the limit cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availibility

The datasets generated during and analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request

References

  1. Newkirk, B.L.: Shaft whipping. Gen. Electr. Rev. 27, 169 (1924)

    Google Scholar 

  2. Newkirk, B.L., Taylor, H.D.: Shaft whipping due to oil action in journal bearings. Gen. Electr. Rev. 28(8), 559–568 (1925)

    Google Scholar 

  3. Kimball, A.L.: Internal friction as a cause of shaft whirling. Lond. Edinb. Dublin Philos. Mag. J. Sci. 49(292), 724–727 (1925)

    Article  Google Scholar 

  4. Smith, D.M.: The motion of a rotor carried by a flexible shaft in flexible bearings. Proc. R. Soc. Lond. Ser. A 142(846), 92–118 (1933)

    Article  MATH  Google Scholar 

  5. Robertson, D.: Whirling of a journal in a sleeve bearing. Lond. Edinb. Dublin Philos. Mag. J. Sci. 15(96), 113–130 (1933)

    Article  MATH  Google Scholar 

  6. Muszynska, A.: Stability of whirl and whip in rotor/bearing systems. J. Sound Vib. 127(1), 49–64 (1988). https://doi.org/10.1016/0022-460X(88)90349-5

    Article  MathSciNet  Google Scholar 

  7. Muszynska, A.: Rotordynamics. Taylor & Francis, Boca Raton (2005)

    Book  MATH  Google Scholar 

  8. Bachschmid, N., Pennacchi, P., Vania, A.: Steam-whirl analysis in a high pressure cylinder of a turbo generator. Mech. Syst. Signal Process. 22(1), 121–132 (2008). https://doi.org/10.1016/j.ymssp.2007.04.005

    Article  Google Scholar 

  9. Vance, J.M., Laudadio, F.J.: Experimental measurement of Alford’s force in axial flow turbomachinery. J. Eng. Gas Turbines Power 106(3), 585–590 (1984). https://doi.org/10.1115/1.3239610

    Article  Google Scholar 

  10. Untaroiu, A., Jin, H., Fu, G., Hayrapetiau, V., Elebiary, K.: The effects of fluid preswirl and swirl brakes design on the performance of labyrinth seals. J. Eng. Gas Turbines Power (2018). https://doi.org/10.1115/1.4038914

    Article  Google Scholar 

  11. Lund, J.W.: Review of the concept of dynamic coefficients for fluid film journal bearings. J. Tribol. 109(1), 37–41 (1987). https://doi.org/10.1115/1.3261324

    Article  Google Scholar 

  12. Tiwari, R., Lees, A.W., Friswell, M.I.: Identification of dynamic bearing parameters: a review. Shock Vib. Digest 36(2), 99–124 (2004). https://doi.org/10.1177/0583102404040173

    Article  Google Scholar 

  13. Sawicki, J.T., Rao, T.V.V.L.N.: A nonlinear model for prediction of dynamic coefficients in a hydrodynamic journal bearing. Int. J. Rotat. Mach. 10, 507–513 (2004). https://doi.org/10.1155/S1023621X04000508

    Article  Google Scholar 

  14. Meruane, V., Pascual, R.: Identification of nonlinear dynamic coefficients in plain journal bearings. Tribol. Int. 41(8), 743–754 (2008). https://doi.org/10.1016/j.triboint.2008.01.002

    Article  Google Scholar 

  15. Chatterton, S., Pennacchi, P., Dang, P.V., Vania, A.: In: Pennacchi, P. (ed.) Proceedings of the 9th IFToMM International Conference on Rotor Dynamics. Mechanisms and Machine Science, pp. 931–941. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-06590-8_76

  16. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Texts in Applied Mathematics, vol. 2. Springer, New York (2003). https://doi.org/10.1007/b97481

    Book  MATH  Google Scholar 

  17. Hollis, P., Taylor, D.L.: Hopf bifurcation to limit cycles in fluid film bearings. J. Tribol. 108(2), 184–189 (1986). https://doi.org/10.1115/1.3261158

    Article  Google Scholar 

  18. Wang, J.K., Khonsari, M.M.: Prediction of the stability envelope of rotor-bearing system. J. Vib. Acoust. 128(2), 197–202 (2005). https://doi.org/10.1115/1.2159035

    Article  Google Scholar 

  19. Wang, J.K., Khonsari, M.M.: Bifurcation analysis of a flexible rotor supported by two fluid-film journal bearings. J. Tribol. 128(3), 594–603 (2006). https://doi.org/10.1115/1.2197842

    Article  Google Scholar 

  20. Wang, J.K., Khonsari, M.M.: Application of Hopf bifurcation theory to rotor-bearing systems with consideration of turbulent effects. Tribol. Int. 39(7), 701–714 (2006). https://doi.org/10.1016/j.triboint.2005.07.031

    Article  Google Scholar 

  21. Miraskari, M., Hemmati, F., Gadala, M.S.: Nonlinear dynamics of flexible rotors supported on journal bearings—part I: analytical bearing model. J. Tribol. (2017). https://doi.org/10.1115/1.4037730

    Article  MATH  Google Scholar 

  22. Chasalevris, A.: Stability and Hopf bifurcations in rotor-bearing-foundation systems of turbines and generators. Tribol. Int. 145, 106,154 (2020). https://doi.org/10.1016/j.triboint.2019.106154

    Article  Google Scholar 

  23. Troger, H., Steindl, A.: Nonlinear Stability and Bifurcation Theory. Springer, Vienna (1991). https://doi.org/10.1007/978-3-7091-9168-2

    Book  MATH  Google Scholar 

  24. Boyaci, A., Hetzler, H., Seemann, W., Proppe, C., Wauer, J.: Analytical bifurcation analysis of a rotor supported by floating ring bearings. Nonlinear Dyn. 57(4), 497–507 (2009). https://doi.org/10.1007/s11071-008-9403-x

    Article  MATH  Google Scholar 

  25. Kano, H., Ito, M., Inoue, T.: Order reduction and bifurcation analysis of a flexible rotor system supported by a full circular journal bearing. Nonlinear Dyn. 95(4), 3275–3294 (2019). https://doi.org/10.1007/s11071-018-04755-z

    Article  MATH  Google Scholar 

  26. Haro, À., Canadell, M., Figueras, J.L., Luque, A., Mondelo, J.M.: The Parameterization Method for Invariant Manifolds: From Rigorous Results to Effective Computations. Applied Mathematical Sciences, vol. 195. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29662-3

    Book  MATH  Google Scholar 

  27. Ponsioen, S., Pedergnana, T., Haller, G.: Automated computation of autonomous spectral submanifolds for nonlinear modal analysis. J. Sound Vib. 420, 269–295 (2018). https://doi.org/10.1016/j.jsv.2018.01.048

    Article  Google Scholar 

  28. Vizzaccaro, A., Opreni, A., Salles, L., Frangi, A., Touzé, C.: High order direct parametrisation of invariant manifolds for model order reduction of finite element structures: application to large amplitude vibrations and uncovering of a folding point. Nonlinear Dyn. 110(1), 525–571 (2022). https://doi.org/10.1007/s11071-022-07651-9

    Article  Google Scholar 

  29. Opreni, A., Vizzaccaro, A., Frangi, A., Touzé, C.: Model order reduction based on direct normal form: application to large finite element MEMS structures featuring internal resonance. Nonlinear Dyn. 105(2), 1237–1272 (2021). https://doi.org/10.1007/s11071-021-06641-7

    Article  Google Scholar 

  30. Ponsioen, S., Jain, S., Haller, G.: Model reduction to spectral submanifolds and forced-response calculation in high-dimensional mechanical systems. J. Sound Vib. 488, 115,640 (2020). https://doi.org/10.1016/j.jsv.2020.115640

    Article  Google Scholar 

  31. Opreni, A., Vizzaccaro, A., Touzé, C., Frangi, A.: High-order direct parametrisation of invariant manifolds for model order reduction of finite element structures: application to generic forcing terms and parametrically excited systems. Nonlinear Dyn. 111(6), 5401–5447 (2023). https://doi.org/10.1007/s11071-022-07978-3

    Article  Google Scholar 

  32. Touzé, C., Vizzaccaro, A., Thomas, O.: Model order reduction methods for geometrically nonlinear structures: a review of nonlinear techniques. Nonlinear Dyn. 105(2), 1141–1190 (2021). https://doi.org/10.1007/s11071-021-06693-9

    Article  Google Scholar 

  33. van den Berg, J.B., Hetebrij, W., Rink, B.: The parameterization method for center manifolds. J. Differ. Equ. 269(3), 2132–2184 (2020). https://doi.org/10.1016/j.jde.2020.01.033

    Article  MathSciNet  MATH  Google Scholar 

  34. Friswell, M.I., Penny, J.E.T., Seamus, D.G., Lees, A.W.: Dynamics of Rotating Machines. Cambridge University Press, New York (2010)

    Book  MATH  Google Scholar 

  35. Vance, J.M., Murphy, B., Zeidan, F.: Machinery Vibration and Rotordynamics. Wiley, Hoboken (2010)

    Book  Google Scholar 

  36. Someya, T. (ed.): Journal-Bearing Databook. Springer, Berlin (1989). https://doi.org/10.1007/978-3-642-52509-4

    Book  Google Scholar 

  37. Krämer, E.: Dynamics of Rotors and Foundations. Springer, Berlin (1993)

    Book  Google Scholar 

  38. Lee, C.W.: Vibration Analysis of Rotors, 1st edn. Springer, Dordrecht (1993)

    Book  Google Scholar 

  39. Haller, G., Ponsioen, S.: Nonlinear normal modes and spectral submanifolds: existence, uniqueness and use in model reduction. Nonlinear Dyn. 86(3), 1493–1534 (2016). https://doi.org/10.1007/s11071-016-2974-z

    Article  MathSciNet  MATH  Google Scholar 

  40. Meirovitch, L.: Computational Methods in Structural Dynamics, vol. 5. Sjithoff & Noordhoff International Publishers, Rockville (1980)

    MATH  Google Scholar 

  41. Jain, S., Haller, G.: How to compute invariant manifolds and their reduced dynamics in high-dimensional finite element models. Nonlinear Dyn. 107(2), 1417–1450 (2022). https://doi.org/10.1007/s11071-021-06957-4

    Article  Google Scholar 

  42. Chouchane, M., Amamou, A.: Bifurcation of limit cycles in fluid film bearings. Int. J. Non-Linear Mech. 46(9), 1258–1264 (2011). https://doi.org/10.1016/j.ijnonlinmec.2011.06.005

    Article  Google Scholar 

  43. Amamou, A.: Nonlinear stability analysis and numerical continuation of bifurcations of a rotor supported by floating ring bearings. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 236(5), 2172–2184 (2022). https://doi.org/10.1177/09544062211026340

    Article  Google Scholar 

  44. Dhooge, A., Govaerts, W., Kuznetsov, Yu.A., Mestrom, W., Riet, A.M.: In: Proceedings of the 2003 ACM Symposium on Applied Computing—SAC ’03 ACM Press, Melbourne, Florida, p. 161 (2003). https://doi.org/10.1145/952532.952567

  45. Boyaci, A.: Numerical continuation applied to nonlinear rotor dynamics. Procedia IUTAM 19, 255–265 (2016). https://doi.org/10.1016/j.piutam.2016.03.032

    Article  Google Scholar 

  46. Anastasopoulos, L., Chasalevris, A.: Bifurcations of limit cycles in rotating shafts mounted on partial arc and lemon bore journal bearings in elastic pedestals. J. Comput. Nonlinear Dyn. (2022). https://doi.org/10.1115/1.4053593

    Article  Google Scholar 

  47. Miura, T., Inoue, T., Kano, H.: Nonlinear analysis of bifurcation phenomenon for a simple flexible rotor system supported by a full-circular journal bearing. J. Vib. Acoust. (2017). https://doi.org/10.1115/1.4036098

    Article  Google Scholar 

  48. Machado, T.H., Alves, D.S., Cavalca, K.L.: Discussion about nonlinear boundaries for hydrodynamic forces in journal bearing. Nonlinear Dyn. 92(4), 2005–2022 (2018). https://doi.org/10.1007/s11071-018-4177-2

    Article  Google Scholar 

  49. El-Shafei, A., Tawfick, S.H., Raafat, M.S., Aziz, G.M.: Some experiments on oil whirl and oil whip. J. Eng. Gas Turbines Power 129(1), 144–153 (2004). https://doi.org/10.1115/1.2181185

    Article  Google Scholar 

  50. ASTM D2270-10: Practice for Calculating Viscosity Index from Kinematic Viscosity at 40 and 100C ASTM International (2016). https://doi.org/10.1520/D2270-10R16

  51. Mereles, A., Cavalca, K.L.: Modeling of multi-stepped rotor-bearing systems by the continuous segment method. Appl. Math. Model. 96, 402–430 (2021). https://doi.org/10.1016/j.apm.2021.03.001

  52. Mereles, A., Alves, D.S., Cavalca, K.L.: Continuous model applied to multi-disk and multi-bearing rotors. J. Sound Vib. 537, 117,203 (2022). https://doi.org/10.1016/j.jsv.2022.117203

    Article  Google Scholar 

  53. Craig, R.R., Bampton, M.C.C.: Coupling of substructures for dynamic analyses. AIAA J. 6(7), 1313–1319 (1968). https://doi.org/10.2514/3.4741

    Article  MATH  Google Scholar 

  54. Allen, M.S., Rixen, D., van der Seijs, M., Tiso, P., Abrahamsson, T., Mayes, R.L.: Substructuring in Engineering Dynamics: Emerging Numerical and Experimental Techniques, CISM International Centre for Mechanical Sciences, vol. 594. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-25532-9

    Book  Google Scholar 

  55. Wagner, M.B., Younan, A., Allaire, P., Cogill, R.: Model reduction methods for rotor dynamic analysis: a survey and review. Int. J. Rotat. Mach. 2010 (2010)

  56. Miraskari, M., Hemmati, F., Gadala, M.S.: Nonlinear dynamics of flexible rotors supported on journal bearings—part II: numerical bearing model. J. Tribol. (2017). https://doi.org/10.1115/1.4037731

    Article  MATH  Google Scholar 

  57. Asgharifard-Sharabiani, P., Ahmadian, H.: Nonlinear model identification of oil-lubricated tilting pad bearings. Tribol. Int. 92, 533–543 (2015). https://doi.org/10.1016/j.triboint.2015.07.039

    Article  Google Scholar 

  58. Alves, D.S., Cavalca, K.L.: In: Cavalca, K.L., Weber, H.I. (eds.) Proceedings of the 10th International Conference on Rotor Dynamics—IFToMM. Mechanisms and Machine Science, pp. 1–15. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-99262-4_1

Download references

Funding

The authors would like to thank CNPq (Grants #307941/2019-1 and #140275/2021-5) for the financial support of this research and the anonymous reviewers for their corrections and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Mereles.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mereles, A., Alves, D.S. & Cavalca, K.L. Bifurcations and limit cycle prediction of rotor systems with fluid-film bearings using center manifold reduction. Nonlinear Dyn 111, 17749–17767 (2023). https://doi.org/10.1007/s11071-023-08788-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08788-x

Keywords

Navigation