Skip to main content
Log in

Discussion about nonlinear boundaries for hydrodynamic forces in journal bearing

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The study of rotating machines is usually carried out taking into account linearized hydrodynamic forces, considering dynamic coefficients of stiffness and damping, although a high order of nonlinearity can be significantly present in the system. To solve the nonlinear problem, the solution of Reynolds equation is practically mandatory for each time step in the numerical integration procedure, leading to high computational costs that often can make its application unavailable. In this paper, the validity of linear approximation for the oil film forces is discussed when the system operates under specific conditions, pointing out the influence of critical phenomena and dynamic parameters in rotordynamic analysis. Experimental tests are compared to numerical simulations for linear and nonlinear models of bearings in laboratory test rig in order to validate the analysis. Afterward, several simulations were accomplished, in time domain, for a rotor configuration more susceptible to critical operation, comparing the results for linear and nonlinear models. The main focus is on the influence of internal damping, gyroscopic effects, journal eccentricities, and excitation forces. The results demonstrate that the excitation force plays a fundamental role in nonlinearity degree of response, namely in extreme operation conditions under high excitation forces, the linear approach fails in representing the hydrodynamic bearings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Stodola, A.: Kristische Wellenstörung infloge der Nachgiebigkeit des Oelpolsters im Lager. Schweizerische Bauzeiting 85, 265–266 (1925)

    Google Scholar 

  2. Hummel, C.: Kristische Drehzahlen als Folge der Nachgiebigkeit des Schmiermittels im Lager. VDI-Forschungsheft 287 (1926)

  3. Lund, J.W., Thomsen, K.K.: A calculation method and data for the dynamic coefficients of oil-lubricated journal bearings. In: Topics in Fluid Bearing and Rotor Bearing System Design and Optimization, pp. 11–28. ASME Technical Publishing, New York (1978)

  4. Lund, J.W.: Review of the concept of dynamic coefficients for fluid film journal bearings. ASME J. Tribol. 109, 37–41 (1987)

    Article  Google Scholar 

  5. Qiu, Z.L., Tieu, A.K.: The effect of perturbation amplitudes on eight force coefficients of journal bearing. Tribol. Trans. 39(2), 469–475 (1996)

    Article  Google Scholar 

  6. Tieu, A.K., Qiu, Z.L.: Identification of sixteen dynamic coefficients of two journal bearings from experimental unbalance response. Wear 177, 63–69 (1994)

    Article  Google Scholar 

  7. Müller-Karger, C.M., Granados, A.L.: Derivation of hydrodynamic bearing coefficients using the minimum square method. Trans. ASME 119, 802–807 (1997)

    Article  Google Scholar 

  8. Zhao, S.X., Zhou, H., Meng, G., Zhu, J.: Experimental identification of linear oil-film coefficients using least-mean-square method in time domain. J. Sound Vib. 287, 809–825 (2005)

    Article  Google Scholar 

  9. Hattori, H.: Dynamic analysis of a rotor-journal bearing system with large dynamic loads (stiffness and damping coefficients variation in bearing oil films). JSME Int. J. Ser. C 36(2), 251–257 (1993)

    Google Scholar 

  10. Khonsari, M.M., Chang, Y.J.: Stability boundary of non-linear orbits within clearance circle of journal bearings. J. Vib. Acoust. 115, 303–307 (1993)

    Article  Google Scholar 

  11. Hu, A., Hou, L., Xiang, L.: Dynamic simulation and experimental study of an asymmetric double-disk rotor-bearing system with rub-impact and oil-film instability. Nonlinear Dyn. 84, 641–659 (2016)

    Article  Google Scholar 

  12. Xiang, L., Gao, X., Aijun, Hu: Nonlinear dynamics of an asymmetric rotor-bearing system with coupling faults of crack and rub-impact under oil-film forces. Nonlinear Dyn. 86, 1057–1067 (2016)

    Article  Google Scholar 

  13. Li, C., She, H., Tang, Q.: The effect of blade vibration on the nonlinear characteristics of rotor-bearing system supported by nonlinear suspension. Nonlinear Dyn. 89, 987–1010 (2017)

    Article  Google Scholar 

  14. Pinkus, O., Sternlicht, S.A.: Thoery of Hydrodynamic Lubrication. McGraw-Hill, New York (1961)

    MATH  Google Scholar 

  15. Nelson, H.D., McVaugh, J.M.: The dynamics of rotor-bearing systems using finite elements. ASME J. Eng. Ind. 98(2), 593–600 (1976)

    Article  Google Scholar 

  16. Lalanne, M., Ferraris, G.: Rotordynamics Prediction in Engineering. Wiley, Chichester (1998)

    Google Scholar 

  17. Nelson, H.D.: A finite rotating shaft element using Timoshenko beam theory. ASME J. Mech. Des. 102(4), 793–803 (1980)

    Article  Google Scholar 

  18. Bathe, K.: Finite Element Procedures in Engineering Analysis. Prentice-Hall, New Jersey (1982)

    Google Scholar 

  19. Patankar, S.V.: Numerical Heat Transfer and Fluid Flow, First edn. Hemisphere Publishing Corporation, Washington, DC (1980)

    MATH  Google Scholar 

  20. Machado, T.H., Cavalca, K.L.: Investigation on an experimental approach to evaluate a wear model for hydrodynamic cylindrical bearings systems. Appl. Math. Model. 40, 9546–9564 (2016)

    Article  Google Scholar 

  21. Liu, W., Novak, M.: Dynamic behaviour of turbine-generator-foundation. Earthq. Eng. Struct. Dyn. 24, 339–360 (1995)

    Article  Google Scholar 

  22. Muszinka, A.: Rotordynamics. Taylor & Francis Group, Boca Raton (2005)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CAPES, CNPq, and Grants # 2015/20363-6 and # 2017/07454-8 from the São Paulo Research Foundation (FAPESP) for the financial support to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Henrique Machado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machado, T.H., Alves, D.S. & Cavalca, K.L. Discussion about nonlinear boundaries for hydrodynamic forces in journal bearing. Nonlinear Dyn 92, 2005–2022 (2018). https://doi.org/10.1007/s11071-018-4177-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4177-2

Keywords

Navigation