Skip to main content
Log in

Adaptive observer for ODE-PDE cascade systems subject to nonlinear dynamics and uncertain parameters

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this article, state and parameter estimation problems are investigated for ODE-PDE coupled systems, for which the parabolic PDE sensor includes nonlinear dynamics and parameter uncertainty. The major difficulty we face is that the link point among the ODE part and the PDE part is not convenient to measurable. For this reason, the objective of this paper is to build an adaptive observer to provide online estimates of states and unknown parameters on the basis that only boundary state is available for measurement. First of all, the observer error system is converted to a tractable target error system by applying the decoupling transformation. Then, the least-squares parameter adaptive law is built. Under an ad hoc persistent excitation condition, the exponentially decaying of the observer error system is demonstrated by applying Lyapunov–Krasovskii functional. Finally, the effectiveness of the theoretical results is confirmed by a simulation example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

The datasets analyzed during the current study are available from the corresponding author on reasonable.

References

  1. Smyshlyaev, A., Krstic, M.: Backstepping observers for a class of parabolic PDEs. Syst. Control Lett. 54(7), 613–625 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Tang, S., Xie, C.: State and output feedback boundary control for a coupled PDE-ODE system. Syst. Control Lett. 60(8), 540–545 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Li, J., Liu, Y.: Stabilization of coupled PDE-ODE systems with spatially varying coefficient. J. Syst. Sci. Complex. 26, 151–174 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wu, H.N., Wang, J.W.: Observer design and output feedback stabilization for nonlinear multivariable systems with diffusion PDE-governed sensor dynamics. Nonlinear Dyn. 72(3), 615–628 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hasan, A., Aamo, O.M., Krstic, M.: Boundary observer design for hyperbolic PDE-ODE cascade systems. Automatica 68, 75–86 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Mathiyalagan, K., Nidhi, A.S., Su, H., Renugadevi, T.: Observer and boundary output feedback control for coupled ODE-transport PDE. Appl. Math. Comput. 426, 127096 (2022)

    MathSciNet  MATH  Google Scholar 

  7. Mathiyalagan, K., Nidhi, A.S.: Observer and output feedback control for nonlinear ordinary differential equation coupled to an under-actuated transport partial differential equation. Int. J. Robust Nonlinear Control 32(12), 7074–7098 (2022)

    Article  MathSciNet  Google Scholar 

  8. Krstic, M.: Compensating actuator and sensor dynamics governed by diffusion PDEs. Syst. Control Lett. 58(5), 372–377 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ahmed-Ali, T., Giri, F., Krstic, M., Lamnabhi-Lagarrigue, F.: Observer design for a class of nonlinear ODE-PDE cascade systems. Syst. Control Lett. 83, 19–27 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ahmed-Ali, T., Giri, F., Krstic, M., Kahelras, M.: PDE based observer design for nonlinear systems with large output delay. Syst. Control Lett. 113, 1–8 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ahmed-Ali, T., Giri, F., Karafyllis, I., Krstic, M.: Sampled boundary observer for strict-feedback nonlinear ODE systems with parabolic PDE sensor. Automatica 101, 439–449 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Benabdelhadi, A., Lailler, M., Giri, F., Ahmed-Ali, T., Fadil, H.E.I., Chaoui, F.: Sampled-output observer design in the presence of nonlinear heat PDE sensor. Int. J. Control 95(3), 743–752 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  13. Koga, S., Krstic, M.: State estimation of the Stefan PDE: a tutorial on design and applications to polar ice and batteries. Annu. Rev. Control 53, 199–223 (2022)

    Article  MathSciNet  Google Scholar 

  14. Smyshlyaev, A., Krstic, M.: Adaptive control of parabolic PDEs, Princeton, NJ. Princeton University Press, USA (2010)

    Book  MATH  Google Scholar 

  15. Ahmed-Ali, T., Giri, F., Krstic, M., Burlion, L., Lamnabhi-Lagarrigue,, F.: Adaptive observer for parabolic PDEs with uncertain parameter in the boundary condition. In: 2015 European Control Conference (ECC), pp. 1343–1348 (2015)

  16. Ahmed-Ali, T., Giri, F., Krstic, M., Burlion, L., Lamnabhi-Lagarrigue, F.: Adaptive boundary observer for parabolic PDEs subject to domain and boundary parameter uncertainties. Automatica 72, 115–122 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ji, C., Zhang, Z.: Adaptive boundary observer design for coupled parabolic PDEs with different diffusions and parameter uncertainty. IEEE Trans. Circuits Syst. I Reg. Pap. 69(7), 3037–3047 (2022)

    Article  Google Scholar 

  18. Ghousein, M., Witrant, E., Bhanot, V., Petagna, P.: Adaptive boundary observer design for linear hyperbolic systems, application to estimation in heat exchangers. Automatica 114, 108824 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Benabdelhadi, A., Giri, F., Ahmed-Ali, T., Krstic, M., Chaoui, F.Z.: Adaptive observer design for wave PDEs with nonlinear dynamics and parameter uncertainty. Automatica 123(5), 109295 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ahmed-Ali, T., Giri, F., Krstic, M., Burlion, L., Lamnabhi-Lagarrigue, F.: Adaptive observer design with heat PDE sensor. Automatica 82, 93–100 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wen, Y., Lou, X., Wu, W., Cui, B.: Impulsive adaptive observer design for a class of hybrid ODE-PDE cascade systems with uncertain parameters. Syst. Control Lett. 154, 104969 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hardy, G., Littlewood, J., Polya, G.: Inequalities. Cambridge University Press, Cambridge, UK (1934)

    MATH  Google Scholar 

  23. Fridman, E., Blighovsky, A.: Robust sampled-data control of a class of semilinear parabolic systems. Automatica 48, 826–836 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, Q.: Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems. IEEE Trans. Autom. Control 47(3), 525–529 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ioannou, P.A., Sun, J.: Robust adaptive control. Prentice Hall, Upper Saddle River, NJ (2006)

    MATH  Google Scholar 

  26. Schaum, A., Moreno, J.A., Fridman, E., Alvarez, J.: Matrix inequality-based observer design for a class of distributed transport-reaction systems. Int. J. Robust Nonlinear Control 24(16), 2213–2230 (2014)

  27. Evans, L.C.: Partial differential equations, Rhode Island. American Mathematical Society, USA (2010)

    Google Scholar 

  28. Henry, D.: Geometric theory of semilinear parabolic equations. Springer, New York (1981)

    Book  MATH  Google Scholar 

  29. Goodwin, G.C., Mayne, D.Q.: A parameter estimation perspective of continuous time model reference adaptive control. Automatica 23(1), 57–70 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yang, W.Y., Cao, W., Chung, T.S., Morris, J.: Applied numerical methods using MATLAB. Wiley, Hoboken, NJ (2005)

  31. Abinandhitha, R., Sakthivel, R., Kong, F., Parivallal, A.: Robust non-fragile boundary control for non-linear parabolic PDE systems with semi-Markov switching and input quantization. Eur. J. Control 67, 100713 (2022)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shandong Provincial Natural Science Foundation (Grant No. ZR2021ZD13), the Taishan Scholarship Project of Shandong Province, and the National Natural Science Foundation of China (Grant No. 61873330).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengqiang Zhang.

Ethics declarations

Conflict the interest

The authors declare no conflict of interest in preparing this article.

Human and animals rights

No human or animal subjects were used in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Properties of the matrix function \({\Omega }(\sigma )\)

To the best of our knowledge, the matrix function \({\Omega }(\sigma )\) meets the ensuing properties:

$$\begin{aligned} (a)~{} & {} {\Omega }(\sigma )=I+\sum _{k=1}^{n-1}\frac{\sigma ^{2k}}{(2k)!}\Big (\frac{A}{{h}}\Big )^{k},\nonumber \\ (b)~{} & {} A{\Omega }(\sigma )={\Omega }(\sigma )A,\nonumber \\ (c)~{} & {} A{\Omega }^{-1}(\sigma )={\Omega }^{-1}(\sigma )A,\nonumber \\ (d)~{} & {} {\Omega }(\sigma )\overset{\text {def}}{=}\left( \begin{array}{cc} I &{} 0 \\ \end{array} \right) e^{\left( \begin{array}{cc} 0 &{} \frac{A}{{h}} \\ I &{} 0 \\ \end{array} \right) \sigma }\left( \begin{array}{c} I \\ 0 \\ \end{array} \right) , \quad \forall \sigma \in {\mathcal {R}} .\nonumber \end{aligned}$$

The reader can refer to Ref. [9] for more details.

Appendix B: The well-posedness of system

Step 1. We first show the well-posedness of the ODE-subsystem (2a) with the initial data X(0). By utilizing the existence theorem of ODEs, the subsystem (2a) exists a unique solution \(X(t)\in {\mathcal {C}}^1([0,+\infty ):{\mathcal {R}}^n)\).

Step 2. The well-posedness of the PDE-subsystem (2b)-(2d) will be illustrated. First, introducing the ensuing transformation for any \((\sigma ,t)\in [0,\ell ]\times [0,+\infty )\)

$$\begin{aligned} q(\sigma ,t){} & {} =u(\sigma ,t)-C{\Omega }(\sigma ){\Omega }^{-1}(\ell )X(t). \end{aligned}$$
(B.1)

Together with Appendix A, we rewrite the system (2b)–(2d) as

$$\begin{aligned} {\left\{ \begin{array}{ll} q_t(\sigma ,t)=hq_{{\sigma \sigma }}(\sigma ,t)+{\bar{g}}(q,\sigma ,t),\\ q_\sigma (0,t)=\phi _3(t)\rho _3,\\ q(\ell ,t)=\phi _4(t)\rho _4, \end{array}\right. } \end{aligned}$$

where \({\bar{g}}(q,\sigma ,t)=g(q+C{\Omega }(\sigma ){\Omega }^{-1}(\ell )X,\sigma ,t)+\phi _2(\sigma ,t)\rho _2 -C{\Omega }(\sigma ){\Omega }^{-1}(\ell )\phi _1(t)\rho _1\). Obviously, function \({\bar{g}}(\cdot )\) inherits all the properties of function \(g(\cdot )\). The q-subsystem turns out to be a special case of the semilinear parabolic system (13)–(14) in Ref. [26]. It can be obtained that one has a strong solution \(q(\sigma ,t) \in \mathcal {H}^1(0,\ell )\) for each \(t\ge 0\). Due to the fact that the transformation (B.1) is inverse, the similar result holds for PDE subsystem (2b)–(2d).

Step 3. In this part, we illustrate the well-posedness of the observer system of Table 1.

First, we develop the well-posedness of the error system (27a)–(27f). Applying the usual existence theorems for ODEs, it follows that the subsystem (27a) exists a unique solution \(Z(t)\in {\mathcal {C}}^1([0,+\infty ):{\mathcal {R}}^n)\). Similarly, we obtain that the subsystem consisting of (27e)–(27f) exists a unique solution \({\tilde{\rho }}\in {\mathcal {C}}^1([0,+\infty ):{\mathcal {R}}^{m}),\) \(Q^{-1}\in {\mathcal {C}}^1([0,+\infty ):{\mathcal {R}}^{m\times m})\), that is, the subsystem consisting of (21a)–(21b) exists a unique solution \({{\hat{\rho }}}\in {\mathcal {C}}^1([0,+\infty ):{\mathcal {R}}^m),\) \(Q\in {\mathcal {C}}^1([0,+\infty ):{\mathcal {R}}^{m\times m})\). Then, it is easy to verify that the subsystem consisting of (27b)–(27d) has a strong solution \(w(\sigma ,t)\in {{\mathcal {H}}}^{1}(0,\ell )\) by means of the similar analysis of Step 2.

Second, utilizing the usual existence theorems for ODEs, we obtain the plant (10) exists a unique solution \(\lambda _{11}(t)\in {\mathcal {C}}^1([0,+\infty ):{\mathcal {R}}^{n\times m_1})\), \(\lambda _{12}(t)\in {\mathcal {C}}^1([0,+\infty ):{\mathcal {R}}^{n\times m_2})\), \(\lambda _{13}(t)\in {\mathcal {C}}^1([0,+\infty ):{\mathcal {R}}^{n\times m_3})\), \(\lambda _{14}(t)\in {\mathcal {C}}^1([0,+\infty ):{\mathcal {R}}^{n\times m_4})\). Then, it is easy to give that the first two equations of (15) and (19) have strong solution \(\lambda _{21}(\sigma ,t)\in {{\mathcal {H}}}^{1}(0,\ell )\) and \(\lambda _{22}(\sigma ,t)\in {{\mathcal {H}}}^{1}(0,\ell )\) applying the similar method with Step 2. Next, applying the method of separation of variables (see Ref. [27]), it follows that the last two equations of (15) and (19) have closed-loop solution.

The above analysis implies that the plant consisting of (5a)–(5d) exists a unique solution \({\tilde{X}}\in {\mathcal {C}}^1([0,+\infty ):{\mathcal {R}}^{n})\) and \({\tilde{u}}(\sigma ,t)\in {{\mathcal {H}}}^{1}(0,\ell )\), due to (6a)–(6b). Consequently, the similar results for the observer states \({\hat{X}}(t)\) and \({\hat{u}}(\sigma ,t)\) are hold.

Appendix C: The proof of Lemma 1

From (10), we found that \(\lambda _{1i}(t)(i=1,2,3,4)\) are bounded if \(\lambda _{2i}(0,t)(i=1,2,3,4)\) are bounded, due to the signal \(\phi _1(t)\) is bounded and \(A-LC{\Omega }^{-1}(\ell )\) is a Hurwitz matrix. Therefore, we only need to suggest \(\lambda _{2i}(\sigma ,t)(i=1,2,3,4)\) are bounded. Consider the ensuing Lyapunov functional

$$\begin{aligned} W_{21}(t)=&~\frac{1}{2}\int _{0}^{\ell }\lambda _{21}(\sigma ,t)\lambda _{21}^T(\sigma ,t)d{\sigma }\nonumber \\&\quad +\frac{1}{2}\int _{0}^{\ell }\lambda _{21,\sigma }(\sigma ,t)\lambda _{21,\sigma }^T(\sigma ,t)d{\sigma }. \end{aligned}$$
(C.1)

Differentiating (C.1) and applying the integration by parts formula, it follows from the first equation of (15) and (19) that

$$\begin{aligned} {\dot{W}}_{21}(t)&=\int _{0}^{\ell }\lambda _{21}(\sigma ,t)\lambda _{21,t}^T(\sigma ,t)d{\sigma }\nonumber \\&\quad +\int _{0}^{\ell }\lambda _{21,\sigma }(\sigma ,t)\lambda _{21,\sigma t}^T(\sigma ,t)d{\sigma }\nonumber \\&=-h\int _{0}^{\ell }\lambda _{21,\sigma }(\sigma ,t)\lambda _{21,\sigma }^T(\sigma ,t)d{\sigma }\nonumber \\&~~~-\int _{0}^{\ell }\lambda _{21}(\sigma ,t)\big (C{\Omega }(\sigma ){\Omega }^{-1}(\ell )\phi _1(t)\big )^Td{\sigma }\nonumber \\&~~~-h\int _{0}^{\ell }\lambda _{21,{\sigma \sigma }}(\sigma ,t)\lambda _{21,{\sigma \sigma }}^T(\sigma ,t)d{\sigma }\nonumber \\&~+\int _{0}^{\ell }\lambda _{21,{\sigma \sigma }}(\sigma ,t)\big (C{\Omega }(\sigma ){\Omega }^{-1}(\ell )\phi _1(t)\big )^Td{\sigma }. \end{aligned}$$
(C.2)

Then, by means of Young’s inequality for (C.2), we get

$$\begin{aligned} {\dot{W}}_{21}(t)=&-h\int _{0}^{\ell }\Vert \lambda _{21,\sigma }(\sigma ,t)\Vert ^2d{\sigma }\\&+\frac{\eta }{2}\int _{0}^{\ell }\Vert \lambda _{21}(\sigma ,t)\Vert ^2d{\sigma }\nonumber \\&~+\frac{1}{2\eta }\int _{0}^{\ell }\Vert C{\Omega }(\sigma ){\Omega }^{-1}(\ell )\phi _1(t)\Vert ^2d{\sigma }\nonumber \\&~-\Big (h-\frac{\zeta }{2}\Big )\int _{0}^{\ell }\Vert \lambda _{21,{\sigma \sigma }}(\sigma ,t)\Vert ^2d{\sigma }\nonumber \\&~+\frac{1}{2\zeta }\int _{0}^{\ell }\Vert C{\Omega }(\sigma ){\Omega }^{-1}(\ell )\phi _1(t)\Vert ^2d{\sigma }, \end{aligned}$$

where \(\eta \) and \(\zeta \) are positive scalars to be determined later. Then, applying (1a) yields

$$\begin{aligned} {\dot{W}}_{21}(t)\le&~-\Big (h-\frac{2\eta \ell ^2}{\pi ^2}\Big )\int _{0}^{\ell }\Vert \lambda _{21,\sigma }(\sigma ,t)\Vert ^2d{\sigma }\nonumber \\&~{+}\Big (\frac{1}{2\eta }{+}\frac{1}{2\zeta }\Big )\int _{0}^{\ell }\Vert C{\Omega }(\sigma ){\Omega }^{{-}1}(\ell )\phi _1(t)\Vert ^2d{\sigma }\nonumber \\&~-\Big (h-\frac{\zeta }{2}\Big )\int _{0}^{\ell }\Vert \lambda _{21,{\sigma \sigma }}(\sigma ,t)\Vert ^2d{\sigma }. \end{aligned}$$

Taking positive constants \(\eta <\frac{\pi ^2 h}{2\ell ^2}\) and \(\zeta <2h\), clearly, we have

$$\begin{aligned} h-\frac{2\eta \ell ^2}{\pi ^2}>0, \quad h-\frac{\zeta }{2}>0. \end{aligned}$$

Then, by means of Wirtinger’s inequality (1a) again, we obtain

$$\begin{aligned} {\dot{W}}_{21}(t)\le&~-\Big (h-\frac{2\eta \ell ^2}{\pi ^2}\Big )\frac{\pi ^2}{4\ell ^2}\int _{0}^{\ell }\Vert \lambda _{21}(\sigma ,t)\Vert ^2d{\sigma }\nonumber \\&~{+}\Big (\frac{1}{2\eta }{+}\frac{1}{2\zeta }\Big )\int _{0}^{\ell }\Vert C{\Omega }(\sigma ){\Omega }^{{-}1}(\ell )\phi _1(t)\Vert ^2d{\sigma }\nonumber \\&~-\Big (h-\frac{\zeta }{2}\Big )\frac{\pi ^2}{4\ell ^2}\int _{0}^{\ell }\Vert \lambda _{21,\sigma }(\sigma ,t)\Vert ^2d{\sigma }\nonumber \\ \le&~\Big (\frac{1}{2\eta }+\frac{1}{2\zeta }\Big )\int _{0}^{\ell }\Vert C{\Omega }(\sigma ){\Omega }^{-1}(\ell )\phi _1(t)\Vert ^2d{\sigma }\nonumber \\&~-\frac{\pi ^2}{2\ell ^2}\textrm{min}\Big \{h-\frac{2\eta \ell ^2}{\pi ^2},h-\frac{\zeta }{2}\Big \}W_{21}(t). \end{aligned}$$

It can be obtained that \({W}_{21}(t)\) is bounded, due to the signal \(\phi _1(t)\) and matrix function \({\Omega }(\sigma )\) are bounded. (C.1) implies that \(\int _{0}^{\ell }\Vert \lambda _{21}(\sigma ,t)\Vert ^2d{\sigma }\) and \(\int _{0}^{\ell }\Vert \lambda _{21,\sigma }(\sigma ,t)\Vert ^2d{\sigma }\) are bounded. From (1b), we infer that \(\Vert \lambda _{21}(\sigma ,t)\Vert \) is bounded, so is \(\Vert \lambda _{11}(t)\Vert \).

In the same manner, we can infer that \(\Vert \lambda _{22}(\sigma ,t)\Vert \), \(\Vert \lambda _{23}(\sigma ,t)\Vert \) and \(\Vert \lambda _{24}(\sigma ,t)\Vert \) are bounded, which suggest that \(\Vert \lambda _{12}(t)\Vert \), \(\Vert \lambda _{13}(t)\Vert \) and \(\Vert \lambda _{14}(t)\Vert \) are also bounded.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, C., Zhang, Z. Adaptive observer for ODE-PDE cascade systems subject to nonlinear dynamics and uncertain parameters. Nonlinear Dyn 111, 17317–17336 (2023). https://doi.org/10.1007/s11071-023-08780-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08780-5

Keywords

Navigation