Skip to main content
Log in

Dynamics of Rossby wave packets with topographic features via derivative expansion approach

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The derivative expansion method was successfully proposed by scholars to characterize the propagation and to discuss the dynamics of nonlinear water waves in the last century. The results manifest the great superiority of this method. The present paper aims mainly at the uses of this technical method to describe the evolutionary processes and to explain the dynamical mechanisms of nonlinear Rossby waves for large-scale geophysical fluid motions. We derive a nonlinear Schrödinger equation from describing the evolution of Rossby wave amplitude. Furthermore, the boundary value problem is handled by using the perturbation expansion method. The effects of initial amplitude, frequency and zonal wave number on the amplitude of Rossby solitary waves are analyzed in both the presence and the absence of topography cases. The effects of weak shear current on dipole blocking are discussed in the presence of bottom topographic structures. The results indicate that topography has a significant impact on the size of amplitude and propagation speed of Rossby waves, and sheared background current will benefit the generation of blockings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Redekopp, L.G.: On the theory of solitary Rossby waves. J. Fluid Mech. 82, 725–745 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Maslowe, S.A., Redekopp, L.G.: Long nonlinear waves in stratified shear flows. J. Fluid Mech. 101(2), 321–348 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  3. Yeh, T.C.: On energy dispersion in the atmosphere. J. Meteorol. 6(1), 1–16 (1949)

    Article  Google Scholar 

  4. Malguzzi, P., Rizzoli, P.M.: The analytical theory Nonlinear stationary Rossby waves on nonuniform zonal winds and atmospheric blocking. Part I: the analytical theory. J. Atmos. Sci. 41, 2620–2628 (1984)

    Article  Google Scholar 

  5. Malguzzi, P., Rizzoli, P.M.: Coherent structures in a baroclinic atmosphere. Part II: a truncated model approach. J. Atmos. Sci. 42, 2463–2477 (1985)

    Article  Google Scholar 

  6. Liu, S.S., Tan, B.K.: Rossby waves with the change of \(\beta \). Appl. Math. Mech. 13(1), 35–44 (1992)

    MathSciNet  Google Scholar 

  7. Zhao, Q.: The influence of orography on the ultra long Rossby waves in the tropical atmosphere(in Chinese). J. Trop. Meteorol. 13(7), 45–50 (1997)

    Google Scholar 

  8. Huang, F., Lou, S.Y.: Analytical investigation of Rossby waves in atmospheric dynamics. Phys. Lett. A 320(5–6), 428–437 (2004)

    Article  MathSciNet  Google Scholar 

  9. Campbell, L.J.: Non-linear dynamics of barotropic Rossby waves in a meridional shear flow. Geophys. Astrophys. Fluid Dyn. 102(2), 139–163 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Song, J., Yang, L.G., Da, C.J., Zhang, H.Q.: mKdV equation for the amplitude of solitary Rossby waves in stratified shear flows with a zonal shear flow. At. Ocean. Sci. Lett. 2(1), 18–23 (2009)

    Google Scholar 

  11. Yang, H.W., Yin, B.S., Yang, D.Z., Xu, Z.H.: Forced solitary Rossby waves under the influence of slowly varying topography with time. Chin. Phys. B 20(12), 30–34 (2011)

    Article  Google Scholar 

  12. He, Y., Li, G.P.: The effects of the plateau’s topographic gradient on Rossby waves and its numerical simulation. J. Trop. Meteorol. 21(4), 337–351 (2015)

    Google Scholar 

  13. Chen, X., Yang, H.W., Dong, J.W., Chen, Y.D., Dong, H.H.: Dissipative Petviashvili equation for the two-dimensional Rossby waves and its solutions. Adv. Mech. Eng. (2017). https://doi.org/10.1177/1687814017735790

    Article  Google Scholar 

  14. Zhang, R.G., Yang, L.G., Song, J., Liu, Q.S.: (2+1)-Dimensional nonlinear Rossby solitary waves under the effects of generalized beta and slowly varying topography. Nonlinear Dyn. 90, 815–822 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhao, B.J., Wang, R.Y., Fang, Q., Sun, W.J., Zhan, T.M.: Rossby solitary waves excited by the unstable topography in weak shear flow. Nonlinear Dyn. 90(2), 889–897 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shi, Y.L., Yang, D.Z., Yin, B.S.: The effect of background flow shear on the topographic Rossby wave. J. Oceanogr. 76(4), 307–315 (2020)

    Article  Google Scholar 

  17. Zhang, R.G., Yang, L.G.: Nonlinear Rossby waves in zonally varying flow under generalized beta approximation. Dyn. Atmos. Oceans 85, 16–27 (2019)

    Article  Google Scholar 

  18. Zhang, R.G., Yang, L.G., Liu, Q.S., Yin, X.J.: Dynamics of nonlinear Rossby waves in zonally varying flow with spatial–temporal varying topography. Appl. Math. Comput. 346, 666–679 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Zhang, Z.H., Chen, L.G., Zhang, R.G., Yang, L.G., Liu, Q.S.: Dynamics of Rossby solitary waves with time-dependent mean flow via Euler eigenvalue model. Appl. Math. Mech. (Engl. Ed.) 43(10), 1615–1630 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yang, H.W., Xu, Z.H., Yang, D.Z., Feng, X.R., Yin, B.S., Dong, H.H.: ZK-Burgers equation for three-dimensional Rossby solitary waves and its solutions as well as chirp effect. Adv. Differ. Equ. 2016(1), 1–22 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yang, H.W., Yin, B.S., Dong, H.H., Ma, Z.D.: Generation of solitary Rossby waves by unstable topography. Commun. Theoret. Phys. 57(3), 473–476 (2012)

    Article  MATH  Google Scholar 

  22. Chen, L.G., Yang, L.G., Zhang, R.G., Liu, Q.S., Cui, J.F.: A (2+1)-dimensional nonlinear model for Rossby waves in stratified fluids and its solitary solution. Commun. Theor. Phys. 72(4), 31–38 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, J., Zhang, R.G., Yang, L.G.: A Gardner evolution equation for topographic Rossby waves and its mechanical analysis. Appl. Math. Comput. 385, 125426 (2020)

    MathSciNet  MATH  Google Scholar 

  24. Zhao, B.J., Cheng, L., Sun, W.J.: Solitary waves of two-layer quasi-geostrophic flow and analytical solutions with scalar nonlinearity. Dyn. Atmos. Oceans 89, 101129 (2020)

    Article  Google Scholar 

  25. Yang, X.Q., Fan, E.G., Zhang, N.: Propagation and modulational instability of Rossby waves in stratified fluids. Chin. Phys. B 31(7), 108–120 (2022)

    Article  Google Scholar 

  26. Gnevyshev, V.V., Frolova, A.V., Belonenko, T.V.: Topographic effect for Rossby waves on non-zonal shear flow. Water Resour. 49(2), 240–248 (2022)

    Article  Google Scholar 

  27. Yin, X.J., Xu, L.Y., Yang, L.G.: Evolution and interaction of soliton solutions of Rossby waves in geophysical fluid mechanics. Nonlinear Dyn. (2023). https://doi.org/10.1007/s11071-023-08424-8

    Article  Google Scholar 

  28. Zhang, Z.Y., Xia, F.L., Li, X.P.: Bifurcation analysis and the travelling wave solutions of the Klein–Gordon–Zakharov equations. Pramana J. Phys. 80(1), 41–59 (2013)

    Article  Google Scholar 

  29. Meng, G.Q., Gao, Y.T., Yu, X., Shen, Y.J., Qin, Y.: Multi-soliton solutions for the coupled nonlinear Schrödinger-type equations. Nonlinear Dyn. 70, 609–617 (2012)

    Article  Google Scholar 

  30. Shi, Y.L., Yang, H.W., Yin, B.S., Yang, D.Z., Xu, Z.H., Feng, X.R.: Dissipative nonlinear Schrödinger equation with external forcing in rotational stratified fluids and its solution. Commun. Theor. Phys. 64(10), 464–472 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Karjanto, N., van Groesen, E.: Derivation of the NLS breather solutions using displaced phase-amplitude variables. In: Proceedings of the 5th SEAMS-GMU International Conference on Mathematics and its Applications 2023, Yogyakarta, pp. 357–368 (2007)

  32. Liu, Y.H., Guo, R., Li, X.L.: Rogue wave solutions and modulation instability for the mixed nonlinear Schrödinger equation. Appl. Math. Lett. 121, 107450 (2021)

    Article  MATH  Google Scholar 

  33. Liu, W., Zhang, Y.S., He, J.S.: Dynamics of the smooth positons of the complex modified KdV equation. Waves Random Complex Media 28(2), 203–214 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ma, W.X.: N-soliton solutions and the Hirota conditions in (2 + 1)-dimensions. Opt. Quant. Electron. 52(12), 1–12 (2020)

    Article  Google Scholar 

  35. Liu, C.C., Wang, H.M., Feng, Z.S.: Global solution for a sixth-order nonlinear Schrödinger equation. J. Math. Anal. Appl. 490(2), 124327 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Bai, X.T., Yin, X.J., Cao, N., Xu, L.Y.: A high dimensional evolution model and its rogue wave solution, breather solution and mixed solutions. Nonlinear Dyn. 111, 12479–12494 (2023)

    Article  Google Scholar 

  37. Narenmandul, Yin, X.J.: Abundance of exact solutions of a nonlinear forced (2+1)-dimensional Zakharov–Kuznetsov equation for Rossby waves. J. Math. 6983877 (2023)

  38. Karjanto, N., Tiong, K.M.: Stability of the NLS equation with viscosity effect. J. Appl. Math. 863161 (2011)

  39. Pedlosky, J.: Geophysical Fluid Dynamics, 2nd edn. Springer-Verlag, New York (1987)

  40. Kuo, H.L.: Dynamic instability of two-dimensional nondivergent flow in a barotropic atmosphere. J. Atmos. Sci. 6, 105–122 (1949)

    Google Scholar 

  41. Yin, X.J., Yang, L.G., Yang, H.L., Zhang, R.G., Su, J.M.: Nonlinear Schrödinger equation for envelope Rossby waves with complete Coriolis force and its solution. Comput. Appl. Math. 38(2), 1–14 (2019)

    Article  MATH  Google Scholar 

Download references

Funding

This research was funded by project supported by the National Natural Science Foundation of China (Nos. 12102205 and 12262025), the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (No. NJYT23098), the Scientific Startin and the Innovative Research Team in Universities of Inner Mongolia Autonomous Region of China (No. NMGIRT2208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruigang Zhang.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zhang, R., Wang, J. et al. Dynamics of Rossby wave packets with topographic features via derivative expansion approach. Nonlinear Dyn 111, 17483–17497 (2023). https://doi.org/10.1007/s11071-023-08775-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08775-2

Keywords

Navigation