Skip to main content
Log in

Nonlinear extended state observer-based adaptive higher-order sliding mode control for parallel antenna platform with input saturation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study introduces a robust trajectory tracking controller for a Stewart-type offshore antenna platform considering unmodeled uncertainties and external disturbances under input saturation. First, a finite-time convergent global fast sliding mode surface combining a nonsingular terminal sliding surface and an integral sliding surface is developed and assigned with an anti-windup factor. In addition, a nonlinear extended state observer is used to estimate and compensate for unknown disturbances and unmodeled uncertainties to improve system robustness. An adaptive higher-order sliding mode controller based on a super-twisting algorithm is designed to improve the robustness of the antenna platform control system while reducing sliding mode chattering by dynamically adjusting the control gain value. Finally, the Lyapunov theory is used to guarantee system stability in the presence of lumped uncertainties and input nonlinearity. The effectiveness of the proposed approach is verified by simulations. The integral of the absolute error of the proposed approach is \({78.0\%}\) lower than that of sliding mode controller based on PID sliding mode surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data Availability Statement

The data that support the finding of this study are available from the corresponding author upon reasonable request.

Abbreviations

AST:

Adaptive super-twisting

AUV:

Autonomous underwater vehicle

BPNN:

Back propagation neural network

DOF:

Degree of freedom

ESO:

Extended state observer

IAE:

Integral of absolute error

ISE:

Integral of squared error

ITAE:

Integral of time-weighted absolute error

NESO:

Nonlinear extended state observer

STA:

Super-twisting algorithm

References

  1. Patel, Y.D., George, P.M., et al.: Parallel manipulators applications-a survey. Modern Mech. Eng. 2(03), 57 (2012)

    Article  Google Scholar 

  2. Di Gregorio, R., Parenti-Castelli, V.: Dynamics of a class of parallel wrists. J. Mech. Des. 126(3), 436–441 (2004)

    Article  Google Scholar 

  3. Zhang, D., Lei, J.: Kinematic analysis of a novel 3-dof actuation redundant parallel manipulator using artificial intelligence approach. Robot. Comput-Integr Manufact. 27(1), 157–163 (2011)

    Article  Google Scholar 

  4. Zhang, H., Fang, H., Jiang, B., Zhao, F., Zhu, T.: A newton-raphson and bp neural network hybrid algorithm for forward kinematics of parallel manipulator. In 2019 WRC Symposium on Advanced Robotics and Automation (WRC SARA), pp 122–127. IEEE, (2019)

  5. Nag, A., Safar, V., Bandyopadhyay, S.: A uniform geometric-algebraic framework for the forward kinematic analysis of 6–6 stewart platform manipulators of various architectures and other related 6–6 spatial manipulators. Mech. Mach. Theory 155, 104090 (2021)

    Article  Google Scholar 

  6. Kalani, H., Rezaei, A., Akbarzadeh, A.: Improved general solution for the dynamic modeling of gough-stewart platform based on principle of virtual work. Nonlinear Dyn. 83(4), 2393–2418 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Oftadeh, R., Aref, MM., Taghirad, H.D.: Explicit dynamics formulation of stewart-gough platform: a newton-euler approach. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2772–2777. IEEE, (2010)

  8. Enferadi, J., Jafari, K.: A kane’s based algorithm for closed-form dynamic analysis of a new design of a 3rss-s spherical parallel manipulator. Multibody Sys. Dyn. 49(4), 377–394 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu, S., Peng, G., Gao, H.: Dynamic modeling and terminal sliding mode control of a 3-dof redundantly actuated parallel platform. Mechatronics 60, 26–33 (2019)

    Article  Google Scholar 

  10. Yang, X.L., HongTao, W., Chen, B., Kang, S.Z., Cheng, S.L.: Dynamic modeling and decoupled control of a flexible stewart platform for vibration isolation. J. Sound Vib. 439, 398–412 (2019)

    Article  Google Scholar 

  11. Zubizarreta, A., Marcos, M., Cabanes, I., Pinto, C.: A procedure to evaluate extended computed torque control configurations in the stewart-gough platform. Robot. Auton. Syst. 59(10), 770–781 (2011)

    Article  Google Scholar 

  12. Lopes, A.M., Almeida, F.G.: Acceleration-based force-impedance control of a six-dof parallel manipulator. Indus. Robot. Int. J. 34(5), 386–399 (2007)

    Article  Google Scholar 

  13. Shang, W., Cong, S.: Motion control of parallel manipulators using acceleration feedback. IEEE Trans. Control Syst. Technol. 22(1), 314–321 (2013)

    Article  Google Scholar 

  14. Navvabi, H., Markazi, A.H.D.: Hybrid position/force control of Stewart manipulator using extended adaptive fuzzy sliding mode controller (e-afsmc). ISA Trans. 88, 280–295 (2019)

    Article  Google Scholar 

  15. Velasco, J., Calvo, I., Barambones, O., Venegas, P., Napole, C.: Experimental validation of a sliding mode control for a stewart platform used in aerospace inspection applications. Mathematics 8(11), 2051 (2020)

    Article  Google Scholar 

  16. Navvabi, H., Markazi, A.H.D.: Position control of stewart manipulator using a new extended adaptive fuzzy sliding mode controller and observer (e-afsmco). J. Franklin Inst. 355(5), 2583–2609 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cai, Y., Zheng, S., Liu, W., Qu, Z., Zhu, J., Han, J.: Sliding-mode control of ship-mounted stewart platforms for wave compensation using velocity feedforward. Ocean Eng. 236, 109477 (2021)

    Article  Google Scholar 

  18. Norouzi, A., Kazemi, R., Azadi, S.: Vehicle lateral control in the presence of uncertainty for lane change maneuver using adaptive sliding mode control with fuzzy boundary layer. Proceed. Inst. Mech. Eng. Part I: J. Syst. Control Eng. 232(1), 12–28 (2018)

    Google Scholar 

  19. Tseng, M.-L., Chen, M.-S.: Chattering reduction of sliding mode control by low-pass filtering the control signal. Asian J. Control 12(3), 392–398 (2010)

    Article  MathSciNet  Google Scholar 

  20. Zhou, Z., Tang, G., Huang, H., Han, L., Ruikun, X.: Adaptive nonsingular fast terminal sliding mode control for underwater manipulator robotics with asymmetric saturation actuators. Control Theory Technol. 18(1), 81–91 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kumar, P.R., Behera, A.K., Bandyopadhyay, B.: Robust finite-time tracking of stewart platform: a super-twisting like observer-based forward kinematics solution. IEEE Trans. Indus. Electron. 64(5), 3776–3785 (2017)

    Article  Google Scholar 

  22. Goel, A., Swarup, A.: Mimo uncertain nonlinear system control via adaptive high-order super twisting sliding mode and its application to robotic manipulator. J. Control, Autom. Electr. Syst. 28(1), 36–49 (2017)

    Article  Google Scholar 

  23. Wang, S., Na, J., Ren, X., Haisheng, Yu., Jinpeng, Yu.: Unknown input observer-based robust adaptive funnel motion control for nonlinear servomechanisms. Int. J. Robust Nonlinear Control 28(18), 6163–6179 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cortés-Romero, J., Rojas-Cubides, H., Coral-Enriquez, H., Sira-Ramírez, H., Luviano-Juárez, A.: Active disturbance rejection approach for robust fault-tolerant control via observer assisted sliding mode control. Math. Probl Eng. 2013, 609523 (2013)

    Article  MathSciNet  Google Scholar 

  25. Iqbal, S., Edwards, C., Bhatti, AI.: Robust feedback linearization using higher order sliding mode observer. In: 2011 50th IEEE Conference on Decision and Control and European Control Conference, pp. 7968–7973. IEEE, (2011)

  26. Madoński, R., Piosik, A., and Herman, P.: High-gain disturbance observer tuning seen as a multicriteria optimization problem. In 21st Mediterranean Conference on Control and Automation, pp. 1411–1416. IEEE, (2013)

  27. Madoński, R., Herman, P.: Survey on methods of increasing the efficiency of extended state disturbance observers. ISA Trans. 56, 18–27 (2015)

    Article  Google Scholar 

  28. Xiong, S., Wang, W., Liu, X., Chen, Z., Wang, S.: A novel extended state observer. ISA Trans. 58, 309–317 (2015)

    Article  Google Scholar 

  29. Zhao, D., Spurgeon, S.K., Liang, H., Li, S., Zhu, Q.: A new terminal converging adaptive control for 6-degree-of-freedom parallel robotic manipulators with bounded control inputs. Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng. 231(4), 271–281 (2017)

    Google Scholar 

  30. Cui, R., Zhang, X., Cui, D.: Adaptive sliding-mode attitude control for autonomous underwater vehicles with input nonlinearities. Ocean Eng. 123, 45–54 (2016)

    Article  Google Scholar 

  31. Ye, M., Gao, G., Zhong, J., Qin, Q.: Finite-time dynamic tracking control of parallel robots with uncertainties and input saturation. Sensors 21(9), 2996 (2021)

    Article  Google Scholar 

  32. Ding, S., Zheng, W.X.: Nonsingular terminal sliding mode control of nonlinear second-order systems with input saturation. Int. J. Robust Nonlinear Control 26(9), 1857–1872 (2016)

  33. Oliveira, C.M.R., Aguiar, M.L., Monteiro, J.R.B.A., Pereira, W.C.A., Paula, G.T., Almeida, T.E.P.: Vector control of induction motor using an integral sliding mode controller with anti-windup. J. Control Autom. Electron. Syst. 27(2), 169–178 (2016)

    Article  Google Scholar 

  34. He, Y., Wu, Y., Li, W.: Sliding mode control for offshore parallel antenna platform with large orientation workspace. ISA Trans. 128, 90–108 (2021)

    Article  Google Scholar 

  35. Dalla Mora, M., Germani, A., Manes, C.: A state observer for nonlinear dynamical systems. Nonlinear Anal. Theory Method Appl. 30, 4485–4496 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Chen, S.-H., Li-Chen, F.: Output feedback sliding mode control for a stewart platform with a nonlinear observer-based forward kinematics solution. IEEE Trans. Control Syst. Technol. 21(1), 176–185 (2011)

    Article  MathSciNet  Google Scholar 

  37. Hu, Q., Jiang, B., Friswell, M.I.: Robust saturated finite time output feedback attitude stabilization for rigid spacecraft. J. Guidance. Control, Dyn. 37(6), 1914–1929 (2014)

    Article  Google Scholar 

  38. Yao, X., Park, J.H., Dong, H., Guo, L., Lin, X.: Robust adaptive nonsingular terminal sliding mode control for automatic train operation. IEEE Trans. Syst. Man Cybern.: Syst. 49(12), 2406–2415 (2018)

    Article  Google Scholar 

  39. Wang, H., Shi, L., Man, Z., Zheng, J., Li, S., Ming, Yu., Jiang, C., Kong, H., Cao, Z.: Continuous fast nonsingular terminal sliding mode control of automotive electronic throttle systems using finite-time exact observer. IEEE Trans. Indus. Electron. 65(9), 7160–7172 (2018)

    Article  Google Scholar 

  40. Shtessel, YB., Moreno, JA., Plestan, F., Fridman L.M., and Poznyak A.S.: Super-twisting adaptive sliding mode control: a Lyapunov design. In 49th IEEE Conference on Decision and Control (CDC), pp 5109–5113. IEEE, (2010)

  41. Shtessel, Y., Taleb, M., Plestan, F.: A novel adaptive-gain supertwisting sliding mode controller: methodology and application. Automatica 48(5), 759–769 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Shin, H.-B., Park, J.-G.: Anti-windup PID controller with integral state predictor for variable-speed motor drives. IEEE Trans. Indus. Electron. 59(3), 1509–1516 (2011)

    Article  Google Scholar 

  43. Schultz, W.C., Rideout, V.C.: Control system performance measures: past, present, and future. IRE Trans. Autom. Control. 1, 22–35 (1961)

    Article  Google Scholar 

  44. Luo, M., Koh, C.G., Bai, W.J.O.E.: A three-dimensional particle method for violent sloshing under regular and irregular excitations. Ocean Eng. 120, 52–63 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant No. 51979117.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijia Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could influence the work reported in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

Proof of Theorem 1

Let \({\mathbf{{u}}=\mathbf{{u}}_{smc}}\), and substitute Eq. (25) into (24), then, it can be written that:

$$\begin{aligned} \begin{aligned} {\dot{\textbf{S}}} =\,\,&{\mathbf{{u}}_{ST}} + {\mathbf{{z}}_3} - \mathbf{{d}}\\ = \,\,&{\mathbf{{u}}_{ST}} - {\mathbf{{e}}_3}. \end{aligned} \end{aligned}$$
(45)

According to the previous discussion, \({\mathbf{{e}}_3}\) is bounded and Lipschitz continuous, and its first derivative is also bounded, namely, \(\left\| {{\mathbf{{e}}_3}} \right\| \le {\Delta _{e3}}\) and \(\left\| {{{{\dot{\textbf{e}}}}_3}} \right\| \le {\Delta _{de3}}\), where \({\Delta _{e3}}\) and \({\Delta _{de3}}\) are small positive constants.

Next, substitute the control law based on the AST given by Eqs. (27) and (28), into Eq. (45):

$$\begin{aligned} \begin{aligned} {\dot{\textbf{S}}} =\,\,&- \lambda |\mathbf{{S}}{|^{\frac{1}{2}}}sign(\mathbf{{S}}) + {\varvec{\mu }} - {\mathbf{{e}}_3}\\ = \,\,&- \lambda |\mathbf{{S}}{|^{\frac{1}{2}}}sign(\mathbf{{S}}) + {{\varvec{\mu }_e}}, \end{aligned} \end{aligned}$$
(46)

where \({{\varvec{\mu }}_e} = {\varvec{\mu }} - {\mathbf{{e}}_3}\).

Then, it holds that:

$$\begin{aligned} \begin{aligned} {{{\varvec{{\dot{\mu }}}}_e}} =&{\varvec{{\dot{\mu }}}} - {{{\dot{\textbf{e}}}}_3}= - \eta sign(\mathbf{{S}}) - {{{\dot{\textbf{e}}}}_3}. \end{aligned} \end{aligned}$$
(47)

Next, we define the Lyapunov function \({V_{AST}}\) as follows:

$$\begin{aligned} {V_{AST}} = {V_{ST}} + \frac{1}{{2{\gamma _{ast1}}}}{(\lambda - {\lambda _0})^2} + \frac{1}{{2{\gamma _{ast2}}}}{(\eta - {\eta _0})^2},\nonumber \\ \end{aligned}$$
(48)

where

$$\begin{aligned} {V_{ST}}= & {} {\mathbf{{Z}}^T}{} \mathbf{{PZ}}, \end{aligned}$$
(49)
$$\begin{aligned} \mathbf{{Z}}= & {} {[\begin{array}{*{20}{c}} {{\mathbf{{Z}}_1}}&{{\mathbf{{Z}}_2}} \end{array}]^T}= {[\begin{array}{*{20}{c}} {|\mathbf{{S}}{|^{\frac{1}{2}}}sign(\mathbf{{S}})}&{{{\varvec{\mu }}_e}} \end{array}]^T}, \end{aligned}$$
(50)
$$\begin{aligned} \mathbf{{P}}= & {} \left[ {\begin{array}{*{20}{c}} {{\zeta _{ast}} + 4\varepsilon _{ast}^2}&{}{ - 2{\varepsilon _{ast}}}\\ { - 2{\varepsilon _{ast}}}&{}1 \end{array}} \right] , \end{aligned}$$
(51)

where \({\lambda _0}\), \({\eta _0}\), and \({\gamma _{ast2}}\) are positive constants.

Further, it can be written that:

$$\begin{aligned} \begin{aligned} {\dot{\textbf{Z}}} =\,\,&\frac{1}{{|{\mathbf{{Z}}_1}|}}\left[ {\begin{array}{*{20}{c}} { - \frac{1}{2}\lambda }&{}{\frac{1}{2}}\\ { - \eta }&{}0 \end{array}} \right] \mathbf{{Z}} + \left[ {\begin{array}{*{20}{c}} 0\\ { - {{{\dot{\textbf{e}}}}_3}} \end{array}} \right] \\ = \,\,&\frac{1}{{|{\mathbf{{Z}}_1}|}}{} \mathbf{{AZ}} + \mathbf{{B}}, \end{aligned} \end{aligned}$$
(52)

where \(\mathbf{{A}} = \left[ {\begin{array}{*{20}{c}} { - \frac{1}{2}\lambda }&{}{\frac{1}{2}}\\ { - \eta }&{}0 \end{array}} \right] \), \(\mathbf{{B}} = \left[ {\begin{array}{*{20}{c}} 0\\ { - {{{\dot{\textbf{e}}}}_3}} \end{array}} \right] \).

The derivative of \({V_{AST}}\) consists of two terms. The first term is the derivative of \({V_{ST}}\) that is given by Eq. (49), which can be expressed as follows:

(53)

where

$$\begin{aligned}{} & {} \mathbf{{W}} = \left[ {\begin{array}{*{20}{c}} 0&{}0\\ { - {\Delta _{de3}}}&{}0 \end{array}} \right] , \end{aligned}$$
(54)
$$\begin{aligned}{} & {} \mathbf{{Q}} = \left[ {\begin{array}{*{20}{c}} {\lambda ({\zeta _{ast}} + 4\varepsilon _{ast}^2) - 4{\varepsilon _{ast}}(\eta + {\Delta _{de3}})}&{}{(\eta + {\Delta _{de3}}) - \frac{1}{2}({\zeta _{ast}} + 4\varepsilon _{ast}^2) - {\varepsilon _{ast}}\lambda }\\ {(\eta + {\Delta _{de3}}) - \frac{1}{2}({\zeta _{ast}} + 4\varepsilon _{ast}^2) - {\varepsilon _{ast}}\lambda }&{}{2{\varepsilon _{ast}}} \end{array}} \right] . \end{aligned}$$
(55)

Next, substituting the second equation of (28) into (55) yields:

$$\begin{aligned} \mathbf{{Q}} = \left[ {\begin{array}{*{20}{c}} {\lambda {\zeta _{ast}} - 2{\varepsilon _{ast}}(2{\Delta _{de3}} + ({\zeta _{ast}} + 4\varepsilon _{ast}^2))}&{}{{\Delta _{de3}}}\\ {{\Delta _{de3}}}&{}{2{\varepsilon _{ast}}} \end{array}} \right] .\nonumber \\ \end{aligned}$$
(56)

Matrix \(\textbf{Q}\) is positive definite when the following inequality holds:

$$\begin{aligned}{} & {} \lambda > \frac{{4\varepsilon _{ast}^2(2{\Delta _{de3}} + ({\zeta _{ast}} + 4\varepsilon _{ast}^2)) + \Delta _{de3}^2}}{{2{\varepsilon _{ast}}{\zeta _{ast}}}}. \end{aligned}$$
(57)

It is worth noting that:

$$\begin{aligned}{} & {} {\lambda _{min}}(\mathbf{{P}}){\left\| \mathbf{{Z}} \right\| ^2} \le {\mathbf{{Z}}^T}{} \mathbf{{PZ}} \le {\lambda _{\max }}(\mathbf{{P}}){\left\| \mathbf{{Z}} \right\| ^2}, \end{aligned}$$
(58)
$$\begin{aligned}{} & {} \left| {{\mathbf{{Z}}_1}} \right| \le \left\| \mathbf{{Z}} \right\| \le \frac{{{V^{\frac{1}{2}}}}}{{\lambda _{min}^{\frac{1}{2}}(\mathbf{{P}})}}. \end{aligned}$$
(59)

Accordingly, from Eq. (53),it can be deduced that:

$$\begin{aligned} \begin{aligned} {{\dot{V}}_{ST}} \le&- \frac{1}{{|{\mathbf{{Z}}_1}|}}{\mathbf{{Z}}^T}{} \mathbf{{QZ}}\\ \le&- \frac{1}{{|{\mathbf{{Z}}_1}|}}\frac{{{\lambda _{min}}(\mathbf{{Q}}){V_{ST}}}}{{{\lambda _{\max }}(\mathbf{{P}})}}\\ \le&- {c_{ST}}V_{ST}^{\frac{1}{2}}, \end{aligned} \end{aligned}$$
(60)

where \({{c_{ST}} = \frac{{{\lambda _{\min }}({\textbf{Q}})\lambda _{min}^{\frac{1}{2}}({\textbf{P}})}}{{{\lambda _{\max }}(\mathbf{{P}})}} > 0}\)

Then, the derivative of \({V_{AST}}\) in Eq. (48) can be obtained by:

$$\begin{aligned} \begin{aligned} {{\dot{V}}_{AST}} \le&- {c_{ST}}V_{ST}^{\frac{1}{2}} + \frac{1}{{{\gamma _{ast1}}}}(\lambda - {\lambda _0}){\dot{\lambda }} + \frac{1}{{{\gamma _{ast2}}}}(\eta - {\eta _0}){\dot{\eta }} \\ =\,\,&- {c_{ST}}V_{ST}^{\frac{1}{2}} - \frac{{{\omega _{ast1}}}}{{\sqrt{2{\gamma _{ast1}}} }}|\lambda - {\lambda _0}| \\&- \frac{{{\omega _{ast2}}}}{{\sqrt{2{\gamma _{ast2}}} }}|\eta - {\eta _0}| + \frac{1}{{{\gamma _{ast1}}}}(\lambda - {\lambda _0})\dot{\lambda }\\&+ \frac{1}{{{\gamma _{ast2}}}}(\eta - {\eta _0}){\dot{\eta }}\\&+ \frac{{{\omega _{ast1}}}}{{\sqrt{2{\gamma _{ast1}}} }}|\lambda - {\lambda _0}| + \frac{{{\omega _{ast2}}}}{{\sqrt{2{\gamma _{ast2}}} }}|\eta - {\eta _0}|, \end{aligned} \end{aligned}$$
(61)

where \({\omega _{ast2}}\) and \({\gamma _{ast2}}\) are positive constants.

Considering the well-known inequality given by:

$$\begin{aligned} {({x^2} + {y^2} + {z^2})^{\frac{1}{2}}} \le |x| + |y| + |z|, \end{aligned}$$
(62)

parts of \({\dot{V}_{AST}}\) can be obtained as follows:

$$\begin{aligned}{} & {} - {c_{ST}}V_{ST}^{\frac{1}{2}} - \frac{{{\omega _{ast1}}}}{{\sqrt{2{\gamma _{ast1}}} }}|\lambda \nonumber \\{} & {} \quad - {\lambda _0}| - \frac{{{\omega _{ast2}}}}{{\sqrt{2{\gamma _{ast2}}} }}|\eta - {\eta _0}| \le - {c_m}{V_{AST}}, \end{aligned}$$
(63)

where \({c_m} = \min \{ {c_{ST}},{\omega _{ast1}},{\omega _{ast2}}\} \).

Then, the derivative of \({V_{AST}}\) in Eq. (61) can be rewritten as follows:

$$\begin{aligned} \begin{aligned} {{\dot{V}}_{AST}} \le&- {c_m}V_{ST}^{\frac{1}{2}} + \frac{1}{{{\gamma _{ast1}}}}(\lambda - {\lambda _0}){\dot{\lambda }} \\&+ \frac{1}{{{\gamma _{ast2}}}}(\eta - {\eta _0}){\dot{\eta }} + \frac{{{\omega _{ast1}}}}{{\sqrt{2{\gamma _{ast1}}} }}|\lambda - {\lambda _0}| \\&+ \frac{{{\omega _{ast2}}}}{{\sqrt{2{\gamma _{ast2}}} }}|\eta - {\eta _0}|. \end{aligned} \end{aligned}$$
(64)

The controller gains \({\lambda }\) and \({\eta }\) can be tuned using the adaptive law (28), so a reasonable assumption about the gains can be made, that is, both \({\lambda }\) and \({\eta }\) are bounded. The proof of this assumption is given in Sect. 4. Based on this assumption, it can inferred that there are positive constants \({\lambda _0}\) and \({\eta _0}\) satisfying the conditions of \({\lambda - \lambda _0 < 0}\) and \({\eta - \eta _0 < 0}\).

Then, Eq. (64) can be rewritten by:

$$\begin{aligned} \begin{aligned} {{\dot{V}}_{AST}} \le&- {c_m}V_{ST}^{\frac{1}{2}} - |\lambda - {\lambda _0}|(\frac{1}{{{\gamma _{ast1}}}}{\dot{\lambda }} \\&- \frac{{{\omega _{ast1}}}}{{\sqrt{2{\gamma _{ast1}}} }}) - |\eta - {\eta _0}|(\frac{1}{{{\gamma _{ast2}}}}{\dot{\eta }} \\&- \frac{{{\omega _{ast2}}}}{{\sqrt{2{\gamma _{ast2}}} }})\\ = \,\,&- {c_m}V_{ST}^{\frac{1}{2}} + \xi , \end{aligned} \end{aligned}$$
(65)

where

$$\begin{aligned} \xi= & {} - |\lambda - {\lambda _0}|(\frac{1}{{{\gamma _{ast1}}}}\dot{\lambda }- \frac{{{\omega _{ast1}}}}{{\sqrt{2{\gamma _{ast1}}} }}) - |\eta \nonumber \\{} & {} - {\eta _0}|(\frac{1}{{{\gamma _{ast2}}}}{\dot{\eta }} - \frac{{{\omega _{ast2}}}}{{\sqrt{2{\gamma _{ast2}}} }}). \end{aligned}$$
(66)

Next, the discussion can be divided into two cases.

Case 1 If \(|\mathbf{{S}}| > {k_{ast}}\) and \(\lambda > {\lambda _m}\), then from Eq. (28), it can obtained that:

$$\begin{aligned} {\dot{\lambda }} = {\omega _{ast1}}\sqrt{\frac{{{\gamma _{ast1}}}}{2}}. \end{aligned}$$
(67)

By selecting \({\varepsilon _{ast}} = \frac{{{\omega _{ast2}}}}{{{\omega _{ast1}}}}\sqrt{\frac{{{\gamma _{ast2}}}}{{{\gamma _{ast1}}}}} \), the derivative of the second equation in (28) can be deduced:

$$\begin{aligned} {\dot{\eta }} = {\varepsilon _{ast}}{\dot{\lambda }} = {\omega _{ast2}}\sqrt{\frac{{{\gamma _{ast2}}}}{2}}. \end{aligned}$$
(68)

After substituting Eqs. (67) and (68) into Eq. (66), term \({\xi }\) in Eq. (65) becomes \({\xi = 0}\) and is holds that:

$$\begin{aligned} {\dot{V}_{AST}} \le - {c_m}V_{ST}^{\frac{1}{2}}. \end{aligned}$$
(69)

The control gain \({\lambda }\) increases according to Eq. (67) to meet the condition defined by Eq. (57). Then, the finite-time convergence of the sliding mode surface in the domain of \(|\mathbf{{S}}| \le {k_{ast}}\) can be guaranteed (Lemma 5 in [37]).

Case 2 If \(|\mathbf{{S}}| < {k_{ast}}\), then from Eq. (28), it can obtained that:

$$\begin{aligned} {\dot{\lambda }} = \left\{ {\begin{array}{*{20}{c}} { - {\omega _{ast1}}\sqrt{\frac{{{\gamma _{ast1}}}}{2}} ,}&{}{\lambda > {\lambda _m}}\\ {{\rho _{ast}},}&{}{\lambda \le {\lambda _m}} \end{array}} \right. , \end{aligned}$$
(70)

and

$$\begin{aligned} \xi = \left\{ {\begin{array}{*{20}{l}} {2|\lambda - {\lambda _0}|\frac{{{\omega _{ast1}}}}{{\sqrt{2{\gamma _{ast1}}} }} + 2|\eta - {\eta _0}|\frac{{{\omega _{ast2}}}}{{\sqrt{2{\gamma _{ast2}}} }},}&{}{\lambda > {\lambda _m}}\\ { - |\lambda - {\lambda _0}|(\frac{{{\rho _{ast}}}}{{{\gamma _{ast1}}}} - \frac{{{\omega _{ast1}}}}{{\sqrt{2{\gamma _{ast1}}} }}) - |\eta - {\eta _0}|(\frac{{{\rho _{ast}}}}{{{\gamma _{ast2}}}} - \frac{{{\omega _{ast2}}}}{{\sqrt{2{\gamma _{ast2}}} }}),}&{}{\lambda \le {\lambda _m}} \end{array}} \right. .\nonumber \\ \end{aligned}$$
(71)

The first equation in Eq. (71) is positive, which guarantees the finite-time convergence of the sliding mode surface in the domain of \(|\mathbf{{S}}| \le {k_{ast}}\) according to Lemma 7 in [37] when \(\lambda > {\lambda _m}\). In the second equation in Eq. (71), the term \({\xi }\) is not positive definite when \(\lambda \le {\lambda _m}\). However, it lasts only for a finite time, making the value of \({\lambda }\) to increase with the rate \({\rho _{ast}}\) according to the second equation in Eq. (70) until \(\lambda > {\lambda _m}\). Then, the finite-time convergence of the sliding mode surface in the domain of \(|\mathbf{{S}}| \le {k_{ast}}\) can be guaranteed again. In control gain adaptation, the sliding mode surface may leave the region \(|\mathbf{{S}}| \le {k_{ast}}\) in a finite time. However, according to the analysis of Case 1, the sliding mode surface will converge to the region of \(|\mathbf{{S}}| \le {k_{ast}}\) in a finite time. Therefore, the sliding mode surface can be guaranteed to stay within a larger domain defined by \({k_{ast}} \le |\mathbf{{S}}| \le {k_{astm}}\), where \({k_{astm}} > {k_{ast}}\).

Thus, the proof of theorem 1 is complete.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Wu, Y. & Li, W. Nonlinear extended state observer-based adaptive higher-order sliding mode control for parallel antenna platform with input saturation. Nonlinear Dyn 111, 16111–16132 (2023). https://doi.org/10.1007/s11071-023-08701-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08701-6

Keywords

Navigation