Skip to main content
Log in

Non-compatible fully PT symmetric Davey–Stewartson system: soliton, rogue wave and breather in nonzero wave background

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we study a non-compatible fully PT symmetric Davey–Stewartson system by removing compatible condition of potential field from compatible case. This move makes the first two equations to be inconsistent and brings to the surface a more general Davey–Stewartson system. One major difference between them is that non-compatibility renders more possible solutions. The such system models evolution of optical wave packet in nonlinear optics and provides two spatial dimensional analogues of the integrable nonlocal nonlinear Schrödinger equation. Next, via Hirota’s method and long wave limit, various kinds of solutions are obtained. N-soliton is deduced by Hirota’s bilinear form, while rational and semi-rational solutions are constructed by applying long wave limit to N-soliton solution. The rational solutions can be classified as kink-shaped, W-shaped and two crossed W-shaped rogue waves. The semi-rational solutions display as hybrids of rogue wave in periodic background, two rogue waves in periodic background, lump and Akhmediev breather in constant background, lump and Akhmediev breather in periodic background. Additionally, we give a detailed comparison between compatible and non-compatible Davey–Stewartson systems to clarify their differences. The proposed method might be useful in solving Hamiltonian systems, and it is essential to look into other symmetric reductions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Gardenr, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-deVries equation. Phys. Rev. Lett. 19, 1095–1098 (1967)

    Google Scholar 

  2. Lax, P.D.: Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure. Appl. Math. 21, 467–490 (1968)

    MathSciNet  MATH  Google Scholar 

  3. Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP. 34, 62–69 (1972)

    MathSciNet  Google Scholar 

  4. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: Inverse scattering transform: fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249–315 (1974)

    MathSciNet  MATH  Google Scholar 

  5. Ablowitz, M.J., Musslimani, Z.H.: Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 915–946 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Bender, C.M., Brody, D.C., Jones, H.F., Meister, B.K.: Faster than Hermitian quantum mechanics. Phys. Rev. Lett. 98, 040403 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Bessis, D.: Private communication

  8. Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)

    MathSciNet  MATH  Google Scholar 

  9. Streater, R.F., Wightman, A.S.: PCT, Spin and statistics, and all that. New York, (1964)

  10. Bender, C.M., Milton, K.A.: Nonperturbative calculation of symmetry breaking in quantum field theory. Phys. Rev. D. 55, 3255–3259 (1997)

    Google Scholar 

  11. Bender, C.M., Milton, K.A.: Model of supersymmetric quantum field theory with broken parity symmetry. Phys. Rev. D. 70, 3595–3608 (1998)

    MathSciNet  Google Scholar 

  12. Bender, C.M., Brody, D.C., Jones, H.F.: Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction. Phys. Rev. D. 57, 025001 (2004)

    Google Scholar 

  13. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear equations. Stud. Appl. Math. 139, 7–59 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Rao, J.G., He, J.S., Mihalache, D., Cheng, Y.: PT-symmetric nonlocal Davey-Stewartson I equation: general lump-soliton solutions on a background of periodic line waves. Appl. Math. Lett. 104, 106246 (2020)

    MathSciNet  MATH  Google Scholar 

  15. Qian, C., Rao, J.G., Mihalache, D., He, J.S.: Rational and semi-rational solutions of the y-nonlocal Davey-Stewartson I equation. Comput. Math. Appl. 75, 3317–3330 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Rao, J.G., Zhang, Y.S., Fokas, A.S., He, J.S.: Rogue waves of the nonlocal Davey-Stewartson I equation. Nonlinearity 31, 4090–4107 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Rao, J.G., Cheng, Y., Porsezian, K., Mihalache, D., He, J.S.: PT-symmetric nonlocal Davey-Stewartson I equation: soliton solutions with nonzero background. Physica. D. 401, 132180 (2020)

    MathSciNet  MATH  Google Scholar 

  18. Wang, S.N., Yu, G.F.: Rational and semi-rational solutions to the Davey-Stewartson III equation. Nonlinear, Dyn (2023)

    Google Scholar 

  19. Liu, Y.B., Mihalache, D., He, J.S.: Families of rational solutions of the y-nonlocal Davey-Stewartson II equation. Nonlinear. Dyn. 90, 2445–2455 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Ding, C.C., Zhou, Q., Triki, H., Sun, Y.Z., Biswas, A.: Dynamics of dark and anti-dark solitons for the x-nonlocal Davey-Stewartson II equation. Nonlinear. Dyn. 111, 2621–2629 (2021)

    Google Scholar 

  21. Cao, Y.L., He, J.S., Mihalache, D.: Families of exact solutions of a new extended (2+1)-dimensional Boussinesq equation. Nonlinear. Dyn. 91, 2593–2605 (2018)

    Google Scholar 

  22. Guo, J.T., He, J.S., Li, M.H., Mihalache, D.: Exact solutions withe elastic interaction for the (2+1)-dimensional extended Kadomtsev-Petviashvili equation. Nonlinear. Dyn. 101, 2413–2422 (2020)

    Google Scholar 

  23. Yang, B., Chen, Y.: Reductions of Darboux transformations for the PT-symmetric nonlocal Davey-Stewartson equations. Appl. Math. Lett. 82, 43–49 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Yang, B., Chen, Y.: Dynamics of rogue waves in the partially PT-symmetric nonlocal Davey-Stewartson systems. Commun. Nonlinear. Sci. Numer. Simulat. 69, 287–303 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Su, J.J., Zhang, S.: Nth-order rogue waves for the AB system via the determinants. Appl. Math. Lett. 112, 106714 (2021)

    MATH  Google Scholar 

  26. Su, J.J., Ruan, B.: N-fold binary Darboux transformation for the nth-order Ablowitz-Kaup-Newell-Segur system under a pseudo-symmetry hypothesis. Appl. Math. Lett. 125, 107719 (2022)

    MATH  Google Scholar 

  27. Liu, Y.B., Fokas, A.S., Mihalache, D., He, J.S.: Parallel line rogue waves of the third-type Davey-Stewartson equatiom. Rom. Rep. Phys. 68, 1425–1446 (2016)

    Google Scholar 

  28. Rao, J.G., Porsezian, K., He, J.S.: Semi-rational solutions of the third-type Davey-Stewartson equation. Chaos 27, 083115 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Luo, H.T., Wang, L., Zhang, Y.B., Lu, G., Su, J.J., Zhao, Y.C.: Data-driven solutions and parameter discovery of the Sasa-Satsuma equation via the physics-informed neural networks method. Physica. D. 440, 133489 (2022)

    MathSciNet  MATH  Google Scholar 

  30. Zhang, S., Lan, P., Su, J.J.: Wave-packet behaviors of the defocusing nonlinear Schrödinger equation based on the modified physics-informed neural networks. Chaos. 31, 113107 (2021)

    Google Scholar 

  31. Hirota, R.: The direct method in soliton theory. Springer, Berlin (2004)

    MATH  Google Scholar 

  32. Rao, J.G., Cheng, Y., He, J.S.: Rational and semi-rational solutions of the nonlocal Davey-Stewartson equations. Stud. Appl. Math. 139, 568–598 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Kodama, Y.: Young diagrams and N-soliton solutions of the KP equation. J. Phys. A. Math. Gen. 37, 11169–11190 (2004)

    MathSciNet  MATH  Google Scholar 

  34. Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Rogue waves and solitons on a cnoidal background. Eur. Phys. J. Special. Topics. 223, 43–62 (2014)

    Google Scholar 

  35. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: New extended Kadomtsev-Petviashvili equation: multiple soliton solutions, breather, lump and interaction solutions. Nonlinear. Dyn. 104, 1581–1594 (2021)

  36. Ablowitz, M.J., Satsuma, J.: Solitons and rational solutions of nonlinear evolution equations. J. Math. Phys. 19, 2180 (1978)

    MathSciNet  MATH  Google Scholar 

  37. Wang, L.Y., Gao, B.: Exact solutions to the fractional complex Ginzburg-Landau equation with time-dependent coefficients under quadratic-cubic and power law nonlinearities. Nonlinear. Dyn. 111, 4709–4722 (2023)

    Google Scholar 

  38. Sun, B.N.: General soliton solutions to a nonlocal long-wave-short-wave resonance interaction equation with nonzero boundary condition. Nonlinear. Dyn. 92, 1369–1377 (2018)

    MATH  Google Scholar 

  39. Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.M.: Rogue waves and rational solutions of the nonlinear Schrödinger equation. Phys. Rev. E. 80, 026601 (2009)

    Google Scholar 

  40. Akhmediev, N., Pelinovsky, E.: Discussion and debate: rogue waves-towards a unifying concept? Eur. Phys. J. Spec. Top. 184, 1–266 (2010)

    Google Scholar 

  41. Akhmediev, N., Ankiewicz, A., Taki, M.: Waves that appear from nowhere and disappear without a trace. Phys. Lett. A. 373, 675–678 (2009)

    MATH  Google Scholar 

  42. Su, J.J., Gao, Y.T., Deng, G.F., Jia, T.T.: Solitary waves, breathers, and rogue waves modulated by long waves for a model of a baroclinic shear flow. Phys. Rev. E. 100, 042210 (2019)

    MathSciNet  Google Scholar 

  43. Su, J.J., Deng, G.F.: Quasi-periodic waves and irregular solitary waves of the AB system. Wave. Random. Complex. 32, 856–866 (2020)

  44. Su, J.J., Zhang, S., Ding, C.C.: Spatiotemporal distortion effects and interaction properties for certain nonlinear waves of the generalized AB system. Nonlinear. Dyn. 106, 2415–2429 (2021)

    Google Scholar 

  45. Li, L.F., Xie, Y.Y., Mei, L.Q.: Multiple-order rogue waves for the generalized (2+1)-dimensional Kadomtsev-Petviashvili equation. Appl. Math. Lett. 117, 107079 (2021)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingying Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned} \displaystyle f=&\left( \vartheta _1 \vartheta _2 \vartheta _3 \vartheta _4 +\tau _{12} \vartheta _3 \vartheta _4+\tau _{13} \vartheta _2 \vartheta _4+\tau _{23} \vartheta _1 \vartheta _4\right. \nonumber \\&\left. +\tau _{14} \vartheta _2 \vartheta _3+\tau _{24} \vartheta _1 \vartheta _3+\tau _{34} \vartheta _1 \vartheta _2\right. \nonumber \\&\left. +\tau _{12} \tau _{34}+\tau _ {14} \tau _{23}+\tau _{13} \tau _{24}\right) \nonumber \\ \displaystyle&+e^{\eta _5}\left( \vartheta _1 \vartheta _2 \vartheta _3 \vartheta _4+\tau _{15} \vartheta _2 \vartheta _3 \vartheta _4\right. \nonumber \\&\left. +\tau _{25} \vartheta _1 \vartheta _3 \vartheta _4+\tau _{35} \vartheta _1 \vartheta _2 \vartheta _4+\tau _{45} \vartheta _1 \vartheta _2 \vartheta _3\right. \nonumber \\&+\left( \tau _{34}+\tau _{35} \tau _{45}\right) \vartheta _1 \vartheta _2\nonumber \\ \displaystyle&+\left( \tau _{23}+\tau _{25} \tau _{35}\right) \vartheta _1 \vartheta _4+\left( \tau _{24}+\tau _{25} \tau _{45}\right) \vartheta _1 \vartheta _3\nonumber \\&+\left( \tau _{13}+\tau _{15} \tau _{35}\right) \vartheta _2 \vartheta _4+\left( \tau _{14}+\tau _{15} \tau _{45}\right) \vartheta _2 \vartheta _3\nonumber \\ \displaystyle&+\left( \tau _{12}+\tau _{15} \tau _{25}\right) \vartheta _3 \vartheta _4+\left( \tau _{25} \tau _{34}+\tau _{24} \tau _{35}+\tau _{23} \tau _{45}\nonumber \right. \\&\left. +\tau _{25} \tau _{35} \tau _{45}\right) \vartheta _1+\left( \tau _{15} \tau _{34}+\tau _{14} \tau _{35} \right. \nonumber \\&\left. +\tau _{13} \tau _{45}+\tau _{15} \tau _{35} \tau _{45}\right) \vartheta _2\nonumber \\ \displaystyle&+\left( \tau _{15} \tau _{24}+\tau _{14} \tau _{25}+\tau _{12} \tau _{45}+\tau _{15} \tau _{25} \tau _{45}\right) \vartheta _3\nonumber \\&+\left( \tau _{15} \tau _{23}+\tau _{13} \tau _{25}+\tau _{12} \tau _{35}+\tau _{15} \tau _{25} \tau _{35}\right) \vartheta _4\nonumber \\ \displaystyle&+\tau _{12} \tau _{34}+\tau _{14} \tau _{23}+\tau _{13} \tau _{24}+\tau _{12} \tau _{35} \tau _{45}\nonumber \\&+\tau _{13} \tau _{25} \tau _{45}+\tau _{14} \tau _{25} \tau _{35}\nonumber \\ \displaystyle&\left. +\tau _{15} \tau _{25} \tau _{34}+\tau _{15} \tau _{24} \tau _{35}+\tau _{15} \tau _{23} \tau _{45}+\tau _{15} \tau _{25} \tau _{35} \tau _{45}\right) ,\nonumber \\ \displaystyle g=&\left( \left( \vartheta _1+b_1\right) \left( \vartheta _2+b_2\right) \left( \vartheta _3+b_3\right) \left( \vartheta _4+b_4\right) \right. \nonumber \\&\left. +\tau _{12}\left( \vartheta _3+b_3\right) \left( \vartheta _4+b_4\right) +\tau _{13} \left( \vartheta _2+b_2\right) \left( \vartheta _4+b_4\right) \right. \nonumber \\ \displaystyle&{+}\tau _{23} \left( \vartheta _1{+}b_1\right) \left( \vartheta _4{+}b_4\right) {+}\tau _{14}\left( \vartheta _2{+}b_2\right) \left( \vartheta _3{+}b_3\right) \nonumber \\&+ \tau _{24}\left( \vartheta _1{+}b_1\right) \left( \vartheta _3{+}b_3\right) {+}\tau _{34}\left( \vartheta _1{+}b_1\right) \left( \vartheta _2{+}b_2\right) \nonumber \\ \displaystyle&\left. +\tau _{12} \tau _{34}+\tau _{14} \tau _{23}+\tau _{13} \tau _{24}\right) \nonumber \\&+e^{\eta _5+i\hbar _5}\left( \left( \vartheta _1+b_1\right) \left( \vartheta _2+b_2\right) \left( \vartheta _3+b_3\right) \left( \vartheta _4+b_4\right) \right. \nonumber \\&\left. +\tau _{15}\left( \vartheta _2+b_2\right) \left( \vartheta _3+b_3\right) \left( \vartheta _4+b_4\right) \right. \nonumber \\ \displaystyle&+\tau _{25}\left( \vartheta _1+b_1\right) \left( \vartheta _3+b_3\right) \left( \vartheta _4+b_4\right) \nonumber \\&+\tau _{35}\left( \vartheta _1+b_1\right) \left( \vartheta _2+b_2\right) \left( \vartheta _4+b_4\right) \nonumber \\&+\tau _{45}\left( \vartheta _1+b_1\right) \left( \vartheta _2+b_2\right) \left( \vartheta _3+b_3\right) \nonumber \\ \displaystyle&+\left( \tau _{34}+\tau _{35} \tau _{45}\right) \left( \vartheta _1+b_1\right) \left( \vartheta _2+b_2\right) \nonumber \\&+\left( \tau _{23}+\tau _{25} \tau _{35}\right) \left( \vartheta _1+b_1\right) \left( \vartheta _4+b_4\right) \nonumber \\&+\left( \tau _{24}+\tau _{25} \tau _{45}\right) \left( \vartheta _1+b_1\right) \left( \vartheta _3+b_3\right) \nonumber \\ \displaystyle&+\left( \tau _{13}+\tau _{15} \tau _{35}\right) \left( \vartheta _2+b_2\right) \left( \vartheta _4+b_4\right) \nonumber \\&+\left( \tau _{14}+\tau _{15} \tau _{45}\right) \left( \vartheta _2+b_2\right) \left( \vartheta _3+b_3\right) \nonumber \\&+\left( \tau _{12}+\tau _{15} \tau _{25}\right) \left( \vartheta _3+b_3\right) \left( \vartheta _4+b_4\right) \nonumber \\ \displaystyle&+\left( \tau _{25} \tau _{34}+\tau _{24} \tau _{35}+\tau _{23} \tau _{45}+\tau _{25} \tau _{35} \tau _{45}\right) \left( \vartheta _1+b_1\right) \nonumber \\&+\left( \tau _{15} \tau _{34}+\tau _{14} \tau _{35}+\tau _{13} \tau _{45}+\tau _{15} \tau _{35} \tau _{45}\right) \left( \vartheta _2+b_2\right) \nonumber \\ \displaystyle&+\left( \tau _{15} \tau _{24}+\tau _{14} \tau _{25}+\tau _{12} \tau _{45}+\tau _{15} \tau _{25} \tau _{45}\right) \left( \vartheta _3+b_3\right) \nonumber \\&+\left( \tau _{15} \tau _{23}+\tau _{13} \tau _{25}+\tau _{12} \tau _{35}\nonumber \right. \\&\left. +\tau _{15} \tau _{25} \tau _{35}\right) \left( \vartheta _4+b_4\right) \nonumber \\ \displaystyle&+\tau _{12} \tau _{34}+\tau _{14} \tau _{23}+\tau _{13} \tau _{24}+\tau _{12} \tau _{35} \tau _{45}\nonumber \\&+\tau _{13} \tau _{25} \tau _{45}+\tau _{14} \tau _{25} \tau _{35}\nonumber \\ \displaystyle&\left. +\tau _{15} \tau _{25} \tau _{34}+\tau _{15} \tau _{24} \tau _{35}\nonumber \right. \\&\left. +\tau _{15} \tau _{23} \tau _{45}+\tau _{15} \tau _{25} \tau _{35} \tau _{45}\right) , \end{aligned}$$
(4.1)

where

$$\begin{aligned}{} & {} \hspace{-20pc}\tau _{s5}=\frac{2\left( -P_5^2+\gamma ^2 Q_5^2\right) \left( 1-\gamma ^2 \lambda _s^2\right) }{-4\epsilon P_5+4 \gamma ^2\epsilon Q_5\lambda _s -\delta _s \sqrt{4 \epsilon +P_5^2-\gamma ^2 Q_5^2}\sqrt{-P_5^2+\gamma ^2 Q_5^2}\sqrt{4 \epsilon } \sqrt{-1+\gamma ^2 \lambda _s^2}}, \end{aligned}$$

\(\vartheta _j,b_j,\tau _{ij}(1\le i<j\le 4),\eta _5,\hbar _5\) is defined in (2.3), (2.4), (2.5) and (3.2).

$$\begin{aligned} \displaystyle f=&\tau _{12}+\vartheta _1 \vartheta _2+e^{\eta _3} \left( \tau _{12}+\tau _{13} \tau _{23}+\tau _{13} \vartheta _2\right. \\&\left. +\tau _{23} \vartheta _1 +\vartheta _1 \vartheta _2\right) \\&+e^{\eta _4} \left( \tau _{12}+\tau _{14} \tau _{24}+\tau _{14} \vartheta _2+\tau _{24} \vartheta _1+\vartheta _1 \vartheta _2\right) \\ \displaystyle&+e^{\eta _5} \left( \tau _{12}+\tau _{15} \tau _{25}+\tau _{15} \vartheta _2+\tau _{25} \vartheta _1+\vartheta _1 \vartheta _2\right) \\&+e^{A_{34}}e^{\eta _3+\eta _4}\left( \left( \tau _{23}+\tau _{24}\right) \left( \tau _{13}+\tau _{14}\right) +\left( \tau _{13}+\tau _{14}\right) \vartheta _2\right. \\ \displaystyle&\left. +\left( \tau _{23}+\tau _{24}\right) \vartheta _1+\vartheta _1 \vartheta _2+\tau _{12}\right) \\&+e^{A_{35}}e^{\eta _3+\eta _5} \left( \left( \tau _{13}+\tau _{15}\right) \left( \tau _{23}+\tau _{25}\right) \right. \\&\left. +\left( \tau _{13}+\tau _{15}\right) \vartheta _2+\left( \tau _{23}+\tau _{25}\right) \vartheta _1\right. \\ \displaystyle&\left. +\vartheta _1 \vartheta _2+\tau _{12}\right) +e^{A_{45}}e^{\eta _4+\eta _5} \left( \tau _{12}+\left( \tau _{14}\right. \right. \\&\left. \left. +\tau _{15}\right) \left( \tau _{24}+\tau _{25}\right) \right. \\&\left. +\left( \tau _{14}+\tau _{15}\right) \vartheta _2+\left( \tau _{24}+\tau _{25}\right) \vartheta _1+\vartheta _1 \vartheta _2\right) \\ \displaystyle&+e^{A_{34}}e^{A_{35}}e^{A_{45}}e^{\eta _3+\eta _4+\eta _5}\left( \tau _{12}+\left( \tau _{13}+\tau _{14}\right. \right. \\&\left. \left. +\tau _{15}\right) \left( \tau _{23}+\tau _{24}+\tau _{25}\right) \right. \\&\left. +\left( \tau _{13}+\tau _{14}+\tau _{15}\right) \vartheta _2\right. \\ \displaystyle&\left. +\left( \tau _{23}+\tau _{24}+\tau _{25}\right) \vartheta _1 +\vartheta _1 \vartheta _2\right) ,\\ \displaystyle g=&\tau _{12}+\left( b_1+\vartheta _1\right) \left( b_2+\vartheta _2\right) \\&+e^{\eta _3+i \hbar _3} \left( \tau _{13} \left( b_2+\vartheta _2\right) +\tau _{23} \left( b_1+\vartheta _1\right) \right. \\&\left. +\left( b_1+\vartheta _1\right) \left( b_2+\vartheta _2\right) +\tau _{12}+\tau _{13} \tau _{23}\right) \\ \displaystyle&+e^{\eta _4+i \hbar _4} \left( \tau _{14} \left( b_2+\vartheta _2\right) \right. \\&\left. +\tau _{24} \left( b_1+\vartheta _1\right) +\left( b_1+\vartheta _1\right) \left( b_2+\vartheta _2\right) \right. \\&\left. +\tau _{12}+\tau _{14} \tau _{24}\right) +e^{\eta _5+i \hbar _5}\left( \tau _{15} \left( b_2+\vartheta _2\right) +\tau _{25} \tau _{15}\right. \\ \displaystyle&\left. +\left( b_1+\vartheta _1\right) \tau _{25}+\left( b_1+\vartheta _1\right) \left( b_2+\vartheta _2\right) +\tau _{12}\right) \\&+e^{A_{34}}e^{\eta _3+i\hbar _3+\eta _4+i\hbar _4}\left( \left( \tau _{13}+\tau _{14}\right) \left( \tau _{23}+\tau _{24}\right) \right. \\&\left. +\left( \tau _{13}+\tau _{14}\right) \left( b_2+\vartheta _2\right) \right. \\ \displaystyle&\left. +\left( \tau _{23}+\tau _{24}\right) \left( b_1+\vartheta _1\right) +\left( b_1+\vartheta _1\right) \left( b_2+\vartheta _2\right) \right. \\&\left. +\tau _{12}\right) +e^{A_{35}}e^{\eta _3+i \hbar _3+\eta _5+i\hbar _5}\left( \left( \tau _{13}+\tau _{15}\right) \left( \tau _{23}+\tau _{25}\right) \right. \\ \displaystyle&+\left( \tau _{13}+\tau _{15}\right) \left( b_2+\vartheta _2\right) \left. +\left( \tau _{23}+\tau _{25}\right) \left( b_1+\vartheta _1\right) \right. \\&\left. +\left( b_1+\vartheta _1\right) \left( b_2+\vartheta _2\right) +\tau _{12}\right) \\ \displaystyle&+e^{A_{45}}e^{\eta _4+i\hbar _4+\eta _5+i\hbar _5}\left( \left( \tau _{14}+\tau _{15}\right) \left( \tau _{24}+\tau _{25}\right) \right. \\&+\left( \tau _{14}+\tau _{15}\right) \left( b_2+\vartheta _2\right) +\left( \tau _{24}+\tau _{25}\right) \left( b_1+\vartheta _1\right) \\ \end{aligned}$$
$$\begin{aligned} \displaystyle&\left. +\left( b_1+\vartheta _1\right) \left( b_2+\vartheta _2\right) +\tau _{12}\right) \nonumber \\&+e^{A_{34}}e^{A_{35}}e^{A_{45}}e^{\eta _3+i\hbar _3+\eta _4+i\hbar _4+\eta _5+i\hbar _5}\nonumber \\&\left( \left( \tau _{13}+\tau _{14}+\tau _{15}\right) \left( \tau _{23}+\tau _{24}+\tau _{25}\right) \right. \nonumber \\ \displaystyle&\left. +\left( \tau _{13}+\tau _{14}+\tau _{15}\right) \left( b_2+\vartheta _2\right) \right. \nonumber \\&\left. +\left( \tau _{23}+\tau _{24}+\tau _{25}\right) \left( b_1+\vartheta _1\right) \right. \nonumber \\&\left. +\left( b_1+\vartheta _1\right) \left( b_2+\vartheta _2\right) +\tau _{12}\right) , \end{aligned}$$
(4.2)

where

$$\begin{aligned} \begin{array}{lll} \vspace{0.3cm} \displaystyle &{} \tau _{sl}=\displaystyle \frac{2\left( -P_l^2+\gamma ^2 Q_l^2\right) \left( 1-\gamma ^2 \lambda _s^2\right) }{-4\epsilon P_l+4 \gamma ^2\epsilon Q_l\lambda _s -\delta _s \sqrt{4 \epsilon +P_l^2-\gamma ^2 Q_l^2}\sqrt{-P_l^2+\gamma ^2 Q_l^2}\sqrt{4 \epsilon } \sqrt{-1+\gamma ^2 \lambda _s^2}},\\ \vspace{0.3cm} \displaystyle &{} s=1,2,l=3,4,5. \end{array} \end{aligned}$$

\(\vartheta _s,b_s,\tau _{sl},\eta _l,\hbar _l,e^{A_{34}},e^{A_{35}},e^{A_{45}}\) is defined in (2.3), (2.4), (2.5) and (3.2).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhu, M., Niu, Y. et al. Non-compatible fully PT symmetric Davey–Stewartson system: soliton, rogue wave and breather in nonzero wave background. Nonlinear Dyn 111, 16407–16426 (2023). https://doi.org/10.1007/s11071-023-08696-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08696-0

Keywords

Navigation