Skip to main content
Log in

Prescribed convergence time control of spacecraft attitude dynamics with parametric uncertainty

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The prescribed convergence time control issue of spacecraft with parametric uncertainty in inertia and disturbance is investigated. An adaptive sliding mode control solution is given. As a stepping stone, a new practical predefined-time stability theorem is established for a class of nonlinear systems. Its maximum convergence time is independent of initial states and explicitly prescribed via a gain given by the users. An adaptive predefined-time sliding-mode manifold is then developed. A chattering-free and nonsingular predefined-time controller is finally designed. The spacecraft attitude dynamics’ states are governed into a tiny neighborhood with arbitrary small radius after the prescribed time. The performance of this control solution is validated through two simulation examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control. Optim. 38(3), 751–766 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hong, Y.R., Huang, J., Xu, Y.S.: On an output feedback finite-time stabilization problem. IEEE Trans. Autom. Control 46(2), 305–309 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Huang, X.Q., Lin, W., Yang, B.: Global finite-time stabilization of a class of uncertain nonlinear systems. Automatica 41(5), 881–888 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Yu, S.H., Yu, X.H., Shirinzadeh, B., Man, Z.H.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11), 1957–1964 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Moulay, E., Perruquetti, W.: Finite time stability and stabilization of a class of continuous systems. J. Math. Anal. Appl. 323(2), 1430–1443 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jin, E., Sun, Z.: Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control. Aerosp. Sci. Technol. 12(4), 324–330 (2008)

    Article  MATH  Google Scholar 

  7. Yang, B., Huang, H., Cao, L.: Centered error entropy-based sigma-point Kalman Filter for spacecraft state estimation with Non-Gaussian noise. Space Sci. Technol. 2022, 9854601 (2022)

    Article  Google Scholar 

  8. Du, H., Li, S.: Finite-time attitude stabilization for a spacecraft using homogeneous method. J. Guid. Control. Dyn. 35(3), 740–748 (2012)

    Article  Google Scholar 

  9. Lu, K.F., Xia, Y.Q.: Adaptive attitude tracking control for rigid spacecraft with finite-time convergence. Automatica 49(12), 3591–3599 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jiang, B., Li, C., Ma, G.: Finite-time output feedback attitude control for spacecraft using “adding a power integrator’’ technique. Aerosp. Sci. Technol. 66, 342–354 (2017)

    Article  Google Scholar 

  11. Andrieu, V., Praly, L., Astolfi, A.: Homogeneous approximation, recursive observer design, and output feedback. SIAM J. Control. Optim. 47(4), 1814–1850 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57(8), 2106-U1 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zuo, Z.Y., Tie, L.: A new class of finite-time nonlinear consensus protocols for multi-agent systems. Int. J. Control 87(2), 363–370 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zuo, Z.Y., Tie, L.: Distributed robust finite-time nonlinear consensus protocols for multi-agent systems. Int. J. Syst. Sci. 47(6), 1366–1375 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jiang, B., Hu, Q., Friswell, M.I.: Fixed-time attitude control for rigid spacecraft with actuator saturation and faults. IEEE Trans. Control Syst. Technol. 24(5), 1892–1898 (2016)

    Article  Google Scholar 

  16. Chen, Q., Xie, S., Sun, M., He, X.: Adaptive nonsingular fixed-time attitude stabilization of uncertain spacecraft. IEEE Trans. Aerosp. Electron. Syst. 54(6), 2937–2950 (2018)

    Article  Google Scholar 

  17. Sun, H.B., Hou, L.L., Zong, G.D., Yu, X.H.: Fixed-time attitude tracking control for spacecraft with input quantization. IEEE Trans. Aerosp. Electron. Syst. 55(1), 124–134 (2019)

    Article  Google Scholar 

  18. Zou, A.M., Kumar, K.D., de Ruiter, A.H.J.: Fixed-time attitude tracking control for rigid spacecraft. Automatica 113, 108792 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, Z., Su, Y., Zhang, L.: Fixed-time attitude tracking control for rigid spacecraft. IET Contr. Theory Appl. 14(5), 790–799 (2020)

    Article  MathSciNet  Google Scholar 

  20. Cao, L., Xiao, B., Golestani, M., Ran, D.: Faster fixed-time control of flexible spacecraft attitude stabilization. IEEE Trans. Ind. Inform. 16(2), 1281–1290 (2020)

    Article  Google Scholar 

  21. Cao, L., Xiao, B., Golestani, M.: Robust fixed-time attitude stabilization control of flexible spacecraft with actuator uncertainty. Nonlinear Dyn. 100(3), 2505–2519 (2020)

    Article  MATH  Google Scholar 

  22. Thomas, P.R., Bhandari, U., Bullock, S., Richardson, T.S., du Bois, J.L.: Advances in air to air refuelling. Prog. Aeosp. Sci. 71, 14–35 (2014)

    Article  Google Scholar 

  23. Diego Sanchez-Torres, J., Gomez-Gutierrez, D., Lopez, E., Loukianov, A.G.: A class of predefined-time stable dynamical systems. IMA J. Math. Control. Inf. 35, 1–29 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sanchez-Torres, J.D., Munoz-Vazquez, A.J., Defoort, M., Jimenez-Rodriguez, E., Loukianov, A.G.: A class of predefined-time controllers for uncertain second-order systems. Eur. J. Control. 53, 52–58 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liang, C.D., Ge, M.F., Liu, Z.W., Ling, G., Zhao, X.W.: A novel sliding surface design for predefined-time stabilization of Euler-Lagrange systems. Nonlinear Dyn. 106(1), 445–458 (2021)

    Article  Google Scholar 

  26. Wang, F., Miao, Y., Li, C., Hwang, I.: Attitude control of rigid spacecraft with predefined-time stability. J. Frankl. Inst.-Eng. Appl. Math. 357(7), 4212–4221 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ye, D., Zou, A.M., Sun, Z.W.: Predefined-time predefined-bounded attitude tracking control for rigid spacecraft. IEEE Trans. Aerosp. Electron. Syst. 58(1), 464–472 (2022)

    Article  Google Scholar 

  28. Wang, Z., Ma, J., Wang, C.: Predefined-time guaranteed performance attitude tracking control for uncertain rigid spacecraft. IET Contr. Theory Appl. pp. 1–13 (2022)

  29. Xie, S., Chen, Q.: Adaptive nonsingular predefined-time control for attitude stabilization of rigid spacecrafts. IEEE Trans. Circuits Syst. II-Express Briefs 69(1), 189–193 (2022)

    Google Scholar 

  30. Wu, C., Yan, J., Shen, J., Wu, X., Xiao, B.: Predefined-time attitude stabilization of receiver aircraft in aerial refueling. IEEE Trans. Circuits Syst. II-Express Briefs 68(10), 3321–3325 (2021)

    Google Scholar 

  31. Jin, R., Geng, Y., Chen, X.: Predefined-time control for free-floating space robots in task space. J. Frankl. Inst.-Eng. Appl. Math. 358(18), 9542–9560 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zou, A.M., Kumar, K.D., de Ruiter, A.H.J.: Robust attitude tracking control of spacecraft under control input magnitude and rate saturations. Int. J. Robust Nonlinear Control 26(4), 799–815 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xiao, B., Yin, S., Wu, L.G.: A structure simple controller for satellite attitude tracking maneuver. IEEE Trans. Ind. Electron. 64(2), 1436–1446 (2017)

    Article  Google Scholar 

  34. Chen, H.T., Song, S.M., Zhu, Z.B.: Robust finite-time attitude tracking control of rigid spacecraft under actuator saturation. Int. J. Control Autom. Syst. 16(1), 1–15 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China under Grant No. 11972373.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Xiao.

Ethics declarations

Conflict of interest

We proclaim that there is no contradiction of interests among us that would affect the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (rar 9082 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, B., Zhao, S., Chen, Z. et al. Prescribed convergence time control of spacecraft attitude dynamics with parametric uncertainty. Nonlinear Dyn 111, 16175–16186 (2023). https://doi.org/10.1007/s11071-023-08695-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08695-1

Keywords

Navigation