Skip to main content
Log in

Attenuation of impact waves in a nonlinear acoustic metamaterial beam

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Wave propagation in nonlinear acoustic metamaterials (NAMs) has attracted broad attention. While showing the possibility of achieving low-frequency and broadband vibration suppression, most existing work focuses on harmonic waves. In this paper, we study the impact wave propagation and its mitigation in a nonlinear metamaterial beam. Thorough numerical analyses show that strongly nonlinear acoustic metamaterials can entail effective attenuation of impact waves in an infinite structure and the impact vibration in a finite structure with a much higher efficiency than what can be achieved in their linear counterparts. The attenuation properties, underlying mechanisms and the influence of key system parameters are clarified. Results show that the observed attenuation is dominated by the nonlinearity-induced self-broadening of the bandgaps whose bandwidths adaptively expand with the propagation distance/time, as a result of the amplitude-dependent nature of the band gaps in a NAM. In a finite NAM structure, significant attenuation of the impact vibration can be achieved, outperforming the corresponding linear cases. These findings shed lights on new physics relating to NAMs and might inspire their further study and application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The majority data have been shown in this paper. All data in this study are available from the corresponding author on reasonable request.

References

  1. Khan, M.H., Li, B., Tan, K.T.: Impact load wave transmission in elastic metamaterials. Int. J. Impact Eng. 118, 50–59 (2018). https://doi.org/10.1016/j.ijimpeng.2018.04.004

    Article  Google Scholar 

  2. Wang, H., Wu, B., Liu, X., Yang, C.-H., He, C.: Influencing factors of the performance of an impact buffering made of the composite granular chain. Int. J. Impact Eng. (2020). https://doi.org/10.1016/j.ijimpeng.2019.103463

    Article  Google Scholar 

  3. Zhou, Y., Ye, L., Chen, Y.: Investigation of novel 3D-printed diatomic and local resonant metamaterials with impact mitigation capacity. Int. J. Mech. Sci. (2021). https://doi.org/10.1016/j.ijmecsci.2021.106632

    Article  Google Scholar 

  4. Zeng, Y.-C., Ding, H., Du, R.-H., Chen, L.-Q.: Micro-amplitude vibration suppression of a bistable nonlinear energy sink constructed by a buckling beam. Nonlinear Dyn. 108, 3185–3207 (2022). https://doi.org/10.1007/s11071-022-07378-7

    Article  Google Scholar 

  5. Habib, G., Romeo, F.: The tuned bistable nonlinear energy sink. Nonlinear Dyn. 89, 179–196 (2017). https://doi.org/10.1007/s11071-017-3444-y

    Article  Google Scholar 

  6. Cai, C., Zhou, J., Wang, K., Pan, H., Tan, D., Xu, D., Wen, G.: Flexural wave attenuation by metamaterial beam with compliant quasi-zero-stiffness resonators. Mech. Syst. Signal Process. (2022). https://doi.org/10.1016/j.ymssp.2022.109119

    Article  Google Scholar 

  7. Dalela, S., Balaji, P.S., Jena, D.P.: Design of a metastructure for vibration isolation with quasi-zero-stiffness characteristics using bistable curved beam. Nonlinear Dyn. 108, 1931–1971 (2022). https://doi.org/10.1007/s11071-022-07301-0

    Article  Google Scholar 

  8. Hu, X., Zhou, C.: Dynamic analysis and experiment of Quasi-zero-stiffness system with nonlinear hysteretic damping. Nonlinear Dyn. 107, 2153–2175 (2022). https://doi.org/10.1007/s11071-021-07136-1

    Article  Google Scholar 

  9. Lin, Q., Zhou, J., Wang, K., Xu, D., Wen, G., Wang, Q., Cai, C.: Low-frequency locally resonant band gap of the two-dimensional quasi-zero-stiffness metamaterials. Int. J. Mech. Sci. (2022). https://doi.org/10.1016/j.ijmecsci.2022.107230

    Article  Google Scholar 

  10. Al-Shudeifat, M.A.: Highly efficient nonlinear energy sink. Nonlinear Dyn. 76, 1905–1920 (2014). https://doi.org/10.1007/s11071-014-1256-x

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhou, K., Xiong, F.R., Jiang, N.B., Dai, H.L., Yan, H., Wang, L., Ni, Q.: Nonlinear vibration control of a cantilevered fluid-conveying pipe using the idea of nonlinear energy sink. Nonlinear Dyn. 95, 1435–1456 (2018). https://doi.org/10.1007/s11071-018-4637-8

    Article  Google Scholar 

  12. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., Mojahed, A., Gzal, M.: Nonlinear targeted energy transfer: state of the art and new perspectives. Nonlinear Dyn. 108, 711–741 (2022). https://doi.org/10.1007/s11071-022-07216-w

    Article  Google Scholar 

  13. Zhang, Z., Gao, Z.-T., Fang, B., Zhang, Y.-W.: Vibration suppression of a geometrically nonlinear beam with boundary inertial nonlinear energy sinks. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-07490-8

    Article  Google Scholar 

  14. Sharma, B., Sun, C.T.: Impact load mitigation in sandwich beams using local resonators. J. Sandw. Struct. Mater. 18, 50–64 (2015). https://doi.org/10.1177/1099636215583171

    Article  Google Scholar 

  15. Hu, B., Yu, D.-L., Liu, J.-W., Zhu, F.-L., Zhang, Z.-F.: Shock vibration characteristics of fluid-structure interaction phononic crystal pipeline. Acta Phys. Sin. C (2020). https://doi.org/10.7498/aps.69.20200414

    Article  Google Scholar 

  16. Manimala, J.M., Huang, H.H., Sun, C.T., Snyder, R., Bland, S.: Dynamic load mitigation using negative effective mass structures. Eng. Struct. 80, 458–468 (2014). https://doi.org/10.1016/j.engstruct.2014.08.052

    Article  Google Scholar 

  17. Miniaci, M., Krushynska, A., Bosia, F., Pugno, N.M.: Large scale mechanical metamaterials as seismic shields. New J. Phys. (2016). https://doi.org/10.1088/1367-2630/18/8/083041

    Article  Google Scholar 

  18. Kim, E., Yang, J., Hwang, H., Shul, C.W.: Impact and blast mitigation using locally resonant woodpile metamaterials. Int. J. Impact Eng. 101, 24–31 (2017). https://doi.org/10.1016/j.ijimpeng.2016.09.006

    Article  Google Scholar 

  19. Wu, L., Wang, Y., Chuang, K., Wu, F., Wang, Q., Lin, W., Jiang, H.: A brief review of dynamic mechanical metamaterials for mechanical energy manipulation. Mater. Today 44, 168–193 (2021). https://doi.org/10.1016/j.mattod.2020.10.006

    Article  Google Scholar 

  20. Fang, X., Wen, J., Cheng, L., Yu, D., Zhang, H., Gumbsch, P.: Programmable gear-based mechanical metamaterials. Nat. Mater. (2022). https://doi.org/10.1038/s41563-022-01269-3

    Article  Google Scholar 

  21. Chirathalattu, A.T., Santhosh, B., Bose, C., Philip, R., Balaram, B.: Passive suppression of vortex-induced vibrations using a nonlinear energy sink—Numerical and analytical perspective. Mech. Syst. Signal Process. (2023). https://doi.org/10.1016/j.ymssp.2022.109556

    Article  Google Scholar 

  22. Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289, 1734–1736 (2000). https://doi.org/10.1126/science.289.5485.1734

    Article  Google Scholar 

  23. Hu, G., Austin, A., Sorokin, V., Tang, L.: Metamaterial beam with graded local resonators for broadband vibration suppression. Mech. Syst. Signal Process. (2021). https://doi.org/10.1016/j.ymssp.2020.106982

    Article  Google Scholar 

  24. Lin, Q., Zhou, J., Pan, H., Xu, D., Wen, G.: Numerical and experimental investigations on tunable low-frequency locally resonant metamaterials. Acta Mech. Solida Sin. 34, 612–623 (2021). https://doi.org/10.1007/s10338-021-00220-4

    Article  Google Scholar 

  25. Wang, K., Zhou, J., Tan, D., Li, Z., Lin, Q., Xu, D.: A brief review of metamaterials for opening low-frequency band gaps. Appl. Math. Mech. 43, 1125–1144 (2022). https://doi.org/10.1007/s10483-022-2870-9

    Article  Google Scholar 

  26. Wu, J., Zeng, L., Han, B., Zhou, Y., Luo, X., Li, X., Chen, X., Jiang, W.: Analysis and design of a novel arrayed magnetic spring with high negative stiffness for low-frequency vibration isolation. Int. J. Mech. Sci. (2022). https://doi.org/10.1016/j.ijmecsci.2021.106980

    Article  Google Scholar 

  27. Hu, B., Zhang, Z., Yu, D., Liu, J., Zhu, F.: Broadband bandgap and shock vibration properties of acoustic metamaterial fluid-filled pipes. J. Appl. Phys. (2020). https://doi.org/10.1063/5.0030179

    Article  Google Scholar 

  28. Hu, B., Zhu, F.-L., Yu, D.-L., Liu, J.-W., Zhang, Z.-F., Zhong, J., Wen, J.-H.: Impact vibration properties of locally resonant fluid-conveying pipes*. Chin. Phys. B (2020). https://doi.org/10.1088/1674-1056/abb312

    Article  Google Scholar 

  29. Chen, Z., Li, F., Zou, G.: Band-gap properties of elastic sandwich metamaterial plates with composite periodic rod core. Acta Mech. Solida Sin. 35, 51–62 (2021). https://doi.org/10.1007/s10338-021-00247-7

    Article  Google Scholar 

  30. Xue, Y., Li, J., Wang, Y., Li, F.: Tunable nonlinear band gaps in a sandwich-like meta-plate. Nonlinear Dyn. 106, 2841–2857 (2021). https://doi.org/10.1007/s11071-021-06961-8

    Article  Google Scholar 

  31. Burlon, A., Failla, G.: Flexural wave propagation in locally-resonant beams with uncoupled/coupled bending-torsion beam-like resonators. Int. J. Mech. Sci. (2022). https://doi.org/10.1016/j.ijmecsci.2021.106925

    Article  MATH  Google Scholar 

  32. Fernandes, R., El-Borgi, S., Yazbeck, R., Boyd, J.G., Lagoudas, D.C.: Non-dimensional analysis of the bandgap formation in a locally resonant metamaterial pipe conveying fluid. Appl. Math. Model. 106, 241–258 (2022). https://doi.org/10.1016/j.apm.2021.12.036

    Article  MathSciNet  MATH  Google Scholar 

  33. Yao, D., Xiong, M., Luo, J., Yao, L.: Flexural wave mitigation in metamaterial cylindrical curved shells with periodic graded arrays of multi-resonator. Mech. Syst. Signal Process. (2022). https://doi.org/10.1016/j.ymssp.2021.108721

    Article  Google Scholar 

  34. Tan, K.T., Huang, H.H., Sun, C.T.: Blast-wave impact mitigation using negative effective mass density concept of elastic metamaterials. Int. J. Impact Eng. 64, 20–29 (2014). https://doi.org/10.1016/j.ijimpeng.2013.09.003

    Article  Google Scholar 

  35. Li, Q.Q., He, Z.C., Li, E., Cheng, A.G.: Design and optimization of three-resonator locally resonant metamaterial for impact force mitigation. Smart Mater. Struct. 27, 095015 (2018). https://doi.org/10.1088/1361-665x/aad479

    Article  Google Scholar 

  36. Li, Q.Q., He, Z.C., Li, E., Cheng, A.G.: Design of a multi-resonator metamaterial for mitigating impact force. J. Appl. Phys. (2019). https://doi.org/10.1063/1.5029946

    Article  Google Scholar 

  37. Chen, H., Barnhart, M.V., Chen, Y.Y., Huang G.L. Blast Mitigation Strategies in Marine Composite and Sandwich Structures, pp. 357–375 (2018)

  38. Patil, G.U., Matlack, K.H.: Review of exploiting nonlinearity in phononic materials to enable nonlinear wave responses. Acta Mech. 233, 1–46 (2021). https://doi.org/10.1007/s00707-021-03089-z

    Article  MathSciNet  MATH  Google Scholar 

  39. Sheng, P., Fang, X., Wen, J., Yu, D.: Vibration properties and optimized design of a nonlinear acoustic metamaterial beam. J. Sound Vib. (2021). https://doi.org/10.1016/j.jsv.2020.115739

    Article  Google Scholar 

  40. Fang, X., Sheng, P., Wen, J., Chen, W., Cheng, L.: A nonlinear metamaterial plate for suppressing vibration and sound radiation. Int. J. Mech. Sci. (2022). https://doi.org/10.1016/j.ijmecsci.2022.107473

    Article  Google Scholar 

  41. Sepehri, S., Mashhadi, M.M., Fakhrabadi, M.M.S.: Dispersion curves of electromagnetically actuated nonlinear monoatomic and mass-in-mass lattice chains. Int. J. Mech. Sci. (2022). https://doi.org/10.1016/j.ijmecsci.2021.106896

    Article  Google Scholar 

  42. Zhao, L., Lu, Z.-Q., Ding, H., Chen, L.-Q.: Experimental observation of transverse and longitudinal wave propagation in a metamaterial periodically arrayed with nonlinear resonators. Mech. Syst. Signal Process. (2022). https://doi.org/10.1016/j.ymssp.2022.108836

    Article  Google Scholar 

  43. Zhang, Y.Y., Zhou, Z.T., Mao, Z.Q., Xiong, L.L., Wu, J.H., Hui, L.: Mechanism of the low-frequency wide-band within a nonlinear acoustic metamaterial. Int. J. Mod. Phys. B 36, 2250067 (2022). https://doi.org/10.1142/S0217979222500679

    Article  Google Scholar 

  44. Liu, Y., Yang, J., Yi, X., Chronopoulos, D.: Enhanced suppression of low-frequency vibration transmission in metamaterials with linear and nonlinear inerters. J. Appl. Phys. (2022). https://doi.org/10.1063/5.0084399

    Article  Google Scholar 

  45. Bae, M.H., Oh, J.H.: Nonlinear elastic metamaterial for tunable bandgap at quasi-static frequency. Mech. Syst. Signal Process. (2022). https://doi.org/10.1016/j.ymssp.2022.108832

    Article  Google Scholar 

  46. Yu, M., Fang, X., Yu, D.: Combinational design of linear and nonlinear elastic metamaterials. Int. J. Mech. Sci. (2021). https://doi.org/10.1016/j.ijmecsci.2021.106422

    Article  Google Scholar 

  47. Fang, X., Wen, J., Yin, J., Yu, D.: Wave propagation in nonlinear metamaterial multi-atomic chains based on homotopy method. AIP Adv. (2016). https://doi.org/10.1063/1.4971761

    Article  Google Scholar 

  48. Fang, X., Wen, J., Yin, J., Yu, D., Xiao, Y.: Broadband and tunable one-dimensional strongly nonlinear acoustic metamaterials: theoretical study. Phys. Rev. E 94, 052206 (2016). https://doi.org/10.1103/PhysRevE.94.052206

    Article  Google Scholar 

  49. Fang, X., Wen, J., Bonello, B., Yin, J., Yu, D.: Wave propagation in one-dimensional nonlinear acoustic metamaterials. New J. Phys. (2017). https://doi.org/10.1088/1367-2630/aa6d49

    Article  MATH  Google Scholar 

  50. Fang, X., Wen, J., Yu, D., Huang, G., Yin, J.: Wave propagation in a nonlinear acoustic metamaterial beam considering third harmonic generation. New J. Phys. (2018). https://doi.org/10.1088/1367-2630/aaf65e

    Article  Google Scholar 

  51. Fang, X., Wen, J., Yu, D., Yin, J.: Bridging-coupling band gaps in nonlinear acoustic metamaterials. Phys. Rev. Appl. (2018). https://doi.org/10.1103/PhysRevApplied.10.054049

    Article  Google Scholar 

  52. Fang, X., Wen, J., Cheng, L., Li, B.: Bidirectional elastic diode with frequency-preserved nonreciprocity. Phys. Rev. Appl. (2021). https://doi.org/10.1103/PhysRevApplied.15.054022

    Article  Google Scholar 

  53. Fang, X., Wen, J., Bonello, B., Yin, J., Yu, D.: Ultra-low and ultra-broad-band nonlinear acoustic metamaterials. Nat. Commun. 8, 1288 (2017). https://doi.org/10.1038/s41467-017-00671-9

    Article  Google Scholar 

  54. Fang, X., Wen, J., Benisty, H., Yu, D.: Ultrabroad acoustical limiting in nonlinear metamaterials due to adaptive-broadening band-gap effect. Phys. Rev. B (2020). https://doi.org/10.1103/PhysRevB.101.104304

    Article  Google Scholar 

  55. Gong, C., Fang, X., Cheng, L.: Band degeneration and evolution in nonlinear triatomic metamaterials. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-07860-2

    Article  Google Scholar 

  56. Fang, X., Wen, J., Yin, J., Yu, D.: Highly efficient continuous bistable nonlinear energy sink composed of a cantilever beam with partial constrained layer damping. Nonlinear Dyn. 87, 2677–2695 (2016). https://doi.org/10.1007/s11071-016-3220-4

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded by the National Natural Science Foundation of China (Projects No. 52241103, No. 11991032), and the Science and Technology Innovation Program of Hunan Province (Projects No. 2020RC4022). Prof. Li Cheng thanks the Research Grant Council of the Hong Kong SAR for providing support through GRF project.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study. The first draft of the manuscript was written by BH and all authors commented on the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xin Fang or Dianlong Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Flexural wave dispersion

Fig. 19
figure 19

Vibration response curves of the bare beam with propagation distance and time. a Longitudinal impact excitation. b Transverse impact excitation

Fig. 20
figure 20

Vibration time domain response curves of the bare beam at different points. a Longitudinal impact excitation. b Transverse impact excitation

The longitudinal vibration of the bare beam under the same longitudinal impact excitation amplitude is analyzed and compared with the flexural vibration under transverse impact excitation to obtain Fig. 19, and the time domain vibration responses at the 1th, 20th, 50th and 100th cells are selected to obtain Fig. 20. The vibration responses of the beam at different points almost remain intact when the longitudinal impact excitation is applied, which is almost the same as the applied pulse excitation waveform, indicating that there is no dispersion phenomenon in the longitudinal propagation process. However, the peak vibration level decreases before disappearing for larger propagation distance when the transverse impact excitation is applied, which is caused by the dispersion of the flexural waves in the beam.

Appendix B: Dispersion curves of 100 cells

See Fig. 21

Fig. 21
figure 21

Dispersion curves of 100 cells with propagation distance at fr = 100 Hz. a LAM beam. b NAM beam

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, B., Fang, X., Cheng, L. et al. Attenuation of impact waves in a nonlinear acoustic metamaterial beam. Nonlinear Dyn 111, 15801–15816 (2023). https://doi.org/10.1007/s11071-023-08689-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08689-z

Keywords

Navigation