Skip to main content
Log in

Painlevé analysis and new class of novel solutions for (2+1)-dimensional 3-component coupled nonlinear Maccari’s system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work, Painlevé analysis is used to examine the integrability of the (2+1)-dimensional 3-component coupled nonlinear Maccari’s system. Subsequently, the truncated Painlevé approach is employed to solve the system, providing solutions in terms of arbitrary functions in space and time. By selecting appropriate arbitrary functions, various field excitations, such as dromion triplet solutions, rogue waves, lumps, peakons and compactons, are constructed. The results are represented graphically to illustrate the behavioral dynamics of the system using Mathematica software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Iqbal, M.S., Ahmed, N., Naeem, R., Akgül, A., Razzaque, A., Inc, M., Khurshid, H.: Dynamical behavior of cancer cell densities in two dimensional domain by the representation theory of solitons. Phys. Lett. A 463, 128670 (2023)

    MathSciNet  MATH  Google Scholar 

  2. Yin, M.-Z., Zhu, Q.-W., Lü, X.: Parameter estimation of the incubation period of covid-19 based on the doubly interval-censored data model. Nonlinear Dyn. 106(2), 1347–1358 (2021)

    Google Scholar 

  3. Lü, X., Hui, H.-W., Liu, F.-F., Bai, Y.-L.: Stability and optimal control strategies for a novel epidemic model of covid-19. Nonlinear Dyn. 106(2), 1491–1507 (2021)

    Google Scholar 

  4. Cheemaa, N., Seadawy, A.R., Chen, S.: Some new families of solitary wave solutions of the generalized Schamel equation and their applications in plasma physics. Eur. Phys. J. Plus 134(3), 117 (2019)

    Google Scholar 

  5. Al-Smadi, M., Arqub, O.A., Hadid, S.: Approximate solutions of nonlinear fractional Kundu-Eckhaus and coupled fractional massive Thirring equations emerging in quantum field theory using conformable residual power series method. Phys. Scr. 95(10), 105205 (2020)

    Google Scholar 

  6. Bordag, L.A., Chmakova, A.Y.: Ecplicit solutions for a nnonlinear model of financial derivatives. Int. J. Theor. Appl. Finance 10(01), 1–21 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Nadeem, M., He, J.-H.: He–Laplace variational iteration method for solving the nonlinear equations arising in chemical kinetics and population dynamics. J. Math. Chem. 59, 1234–1245 (2021)

    MathSciNet  MATH  Google Scholar 

  8. Subramanian, K., Alagesan, T., Mahalingam, A., Mani Rajan, M.: Propagation properties of optical soliton in an erbium-doped tapered parabolic index nonlinear fiber: soliton control. Nonlinear Dyn. 87, 1575–1587 (2017)

    Google Scholar 

  9. Nair, A.A., Beevi, A.B., Subramanian, K., Rajan, M.M.: Influence of septic nonlinearity on modulation instability under normal and anomalous dispersion regime. Optik 204, 164114 (2020)

    Google Scholar 

  10. Subramanian, K., Hakkim, J., Natarajan, V., Bhuvaneshwari, B., Indumathi, P.: Various dynamical management of three solitons through modulated coefficients in a real lossy fiber system. Int. J. Appl. Comput. Math. 8(6), 279 (2022)

    Google Scholar 

  11. Gürses, M., Pekcan, A.: Nonlocal modified KdV equations and their soliton solutions by Hirota method. Commun. Nonlinear Sci. Numer. Simul. 67, 427–448 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Chen, S.-J., Yin, Y.-H., Lü, X.: Elastic collision between one lump wave and multiple stripe waves of nonlinear evolution equations. Communications in Nonlinear Science and Numerical Simulation, 107205 (2023)

  13. Yin, Y.-H., Lü, X., Ma, W.-X.: Bäcklund transformation, exact solutions and diverse interaction phenomena to a (3+ 1)-dimensional nonlinear evolution equation. Nonlinear Dyn. 108(4), 4181–4194 (2022)

    Google Scholar 

  14. Lü, X., Chen, S.-J.: Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types. Nonlinear Dyn. 103, 947–977 (2021)

    MATH  Google Scholar 

  15. Ibrahim, I.A., Taha, W.M., Noorani, M.: Homogenous balance method for solving exact solutions of the nonlinear benny-luke equation and Vakhnenko-Parkes equation. Zanco J. Pure Appl. Sci. 31(s4), 52–56 (2019)

    Google Scholar 

  16. Zhao, Y.-W., Xia, J.-W., Lü, X.: The variable separation solution, fractal and chaos in an extended coupled (2+ 1)-dimensional burgers system. Nonlinear Dyn. 108(4), 4195–4205 (2022)

    Google Scholar 

  17. Manafian, J., Foroutan, M.: Application of \(\backslash \) tan \((\phi ( )/2)\) tan \((\phi ( )/2)\)-expansion method for the time-fractional Kuramoto-Sivashinsky equation. Opt. Quant. Electron. 49, 1–18 (2017)

  18. Zhou, Q., Ekici, M., Sonmezoglu, A., Mirzazadeh, M.: Optical solitons with Biswas-Milovic equation by extended \((\frac{G^\prime }{G})\)-expansion method. Optik 127(16), 6277–6290 (2016)

    Google Scholar 

  19. Zhang, R.-F., Li, M.-C.: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear Dyn. 108(1), 521–531 (2022)

    Google Scholar 

  20. Zhang, R.-F., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 95, 3041–3048 (2019)

    MATH  Google Scholar 

  21. Ali, K.K., Wazwaz, A.-M., Osman, M.: Optical soliton solutions to the generalized nonautonomous nonlinear schrödinger equations in optical fibers via the sine-Gordon expansion method. Optik 208, 164132 (2020)

    Google Scholar 

  22. Gugan, S., Subramanian, K., Mani Rajan, M., Alagesan, T.: Four soliton propagation in a generalized nonautonomous Hirota equation using Darboux transformation. Opt. Quant. Electron. 55(4), 354 (2023)

    Google Scholar 

  23. Prathap, N., Arunprakash, S., Rajan, M.S.M., Subramanian, K.: Multiple dromion excitations in sixth order NLS equation with variable coefficients. Optik 158, 1179–1185 (2018)

    Google Scholar 

  24. Karthikeyaraj, G., Rajan, M., Tantawy, M., Subramanian, K.: Periodic oscillations and nonlinear tunneling of soliton for Hirota-MB equation in inhomogeneous fiber. Optik 181, 440–448 (2019)

    Google Scholar 

  25. Demirbileko, U., Ala, V., Mamedov, K.R.: An application of improved Bernoulli sub-equation function method to the nonlinear conformable time-fractional equation. Tbilisi Math. J. 14(3), 59–70 (2021)

    MathSciNet  MATH  Google Scholar 

  26. Abbasbandy, S., Shirzadi, A.: The first integral method for modified Benjamin–Bona–Mahony equation. Commun. Nonlinear Sci. Numer. Simul. 15(7), 1759–1764 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Lin, J., Li, H.-M.: Painlevé integrability and abundant localized structures of (2+ 1)-dimensional higher order Broer-Kaup system. Zeitschrift für Naturforschung A 57(12), 929–936 (2002)

    Google Scholar 

  28. Subramanian, K., Kumar, C.S., Radha, R., Alagesan, T.: Elusive noninteracting localized solutions of (2+ 1)-dimensional maccari equation. Romanian Rep. Phy. 69(2) (2017)

  29. Sivatharani, B., Subramanian, K., Sekar, A., Shanmugha Sundaram, P.: Painlevé integrability and multi-wave pattern for (2+ 1)-dimensional long wave-short wave resonance interaction system. Nonlinear Dyn. 109(3), 1935–1946 (2022)

    Google Scholar 

  30. Peng, Y.-Z.: A class of doubly periodic wave solutions for the generalized Nizhnik–Novikov–Veselov equation. Phys. Lett. A 337(1), 55–60 (2005)

    MathSciNet  MATH  Google Scholar 

  31. Sivatharani, B., Subramanian, K., Rajan, M.S.M., Alagesan, T.: A class of nonlinear wave patterns for (2+1) dimensional coupled integrable Maccari’s system. Phys. Scr. 98(4), 045220 (2023)

    Google Scholar 

  32. Thilakavathy, J., Amrutha, R., Subramanian, K., Rajan, M.M.: Different wave patterns for (2+ 1) dimensional Maccari’s equation. Nonlinear Dyn. 108(1), 445–456 (2022)

    Google Scholar 

  33. Maccari, A.: The Kadomtsev–Petviashvili equation as a source of integrable model equations. J. Math. Phys. 37(12), 6207–6212 (1996)

    MathSciNet  MATH  Google Scholar 

  34. Ciancio, A., Baskonus, H.M., Sulaiman, T.A., Bulut, H.: New structural dynamics of isolated waves via the coupled nonlinear Maccari’s system with complex structure. Indian J. Phys. 92, 1281–1290 (2018)

    Google Scholar 

  35. Neirameh, A.: New analytical solutions for the coupled nonlinear Maccari’s system. Alex. Eng. J. 55(3), 2839–2847 (2016)

    Google Scholar 

  36. Radha, R., Kumar, C.S., Subramanian, K., Alagesan, T.: Drone like dynamics of dromion pairs in the (2+ 1) AKNS equation. Comput. Math. Appl. 75(7), 2356–2364 (2018)

    MathSciNet  MATH  Google Scholar 

  37. Baskonus, H.M., Sulaiman, T.A., Bulut, H.: On the novel wave behaviors to the coupled nonlinear Maccari’s system with complex structure. Optik 131, 1036–1043 (2017)

    Google Scholar 

  38. Cheemaa, N., Chen, S., Seadawy, A.R.: Propagation of isolated waves of coupled nonlinear (2+ 1)-dimensional Maccari system in plasma physics. Results Phys. 17, 102987 (2020)

    Google Scholar 

  39. Alkhidhr, H.A., Abdelrahman, M.A.: Wave structures to the three coupled nonlinear Maccari’s systems in plasma physics. Results Phys. 33, 105092 (2022)

    Google Scholar 

  40. Li, Z., Xie, X., Jin, C.: Phase portraits and optical soliton solutions of coupled nonlinear Maccari systems describing the motion of solitary waves in fluid flow. Results Phys. 41, 105932 (2022)

    Google Scholar 

  41. Islam, T., Akbar, A., Rezazadeh, H., Bekir, A.: New-fashioned solitons of coupled nonlinear maccari systems describing the motion of solitary waves in fluid flow. J. Ocean Eng. Sci. (2022)

  42. Arafat, S.Y., Fatema, K., Islam, M.E., Akbar, M.A.: Promulgation on various genres soliton of Maccari system in nonlinear optics. Opt. Quant. Electron. 54(4), 206 (2022)

    Google Scholar 

  43. Weiss, J., Tabor, M., Carnevale, G.: The Painlevé property for partial differential equations. J. Math. Phys. 24(3), 522–526 (1983)

    MathSciNet  MATH  Google Scholar 

  44. Wazwaz, A.-M.: New (3+ 1)-dimensional Painlevé integrable fifth-order equation with third-order temporal dispersion. Nonlinear Dyn. 106(1), 891–897 (2021)

    Google Scholar 

  45. Wazwaz, A.-M.: Painlevé integrability and lump solutions for two extended (3+ 1)-and (2+ 1)-dimensional Kadomtsev–Petviashvili equations. Nonlinear Dyn. 111(4), 3623–3632 (2023)

    Google Scholar 

  46. Alagesan, T., Porsezian, K.: Painlevé analysis and the integrability properties of coupled integrable dispersionless equations. Chaos, Solitons Fractals 7(8), 1209–1212 (1996)

    MathSciNet  MATH  Google Scholar 

  47. Ciancio, A., Baskonus, H.M., Sulaiman, T.A., Bulut, H.: New structural dynamics of isolated waves via the coupled nonlinear Maccari’s system with complex structure. Indian J. Phys. 92, 1281–1290 (2018)

    Google Scholar 

  48. Li, Z., Xie, X., Jin, C.: Phase portraits and optical soliton solutions of coupled nonlinear Maccari systems describing the motion of solitary waves in fluid flow. Results Phys. 41, 105932 (2022)

    Google Scholar 

  49. Ghosh, S., Sen, A., Lakhina, G.: Dromion solutions for nonlinear electron acoustic waves in space plasmas. Nonlinear Process. Geophys. 9(5/6), 463–475 (2002)

    Google Scholar 

  50. Tariq, K., Seadawy, A.R., Zainab, H., Ashraf, M., Rizvi, S.: Some new optical dromions to (2+ 1)-dimensional nonlinear Schrödinger equation with Kerr law of nonlinearity. Opt. Quant. Electron. 54(6), 385 (2022)

    Google Scholar 

  51. Shi, Z., Huang, G.: Matter-wave dromions in a disk-shaped dipolar Bose-Einstein condensate with the Lee-Huang-Yang correction. Phys. Rev. E 107(2), 024214 (2023)

    MathSciNet  Google Scholar 

  52. Zhang, R.-F., Li, M.-C., Gan, J.-Y., Li, Q., Lan, Z.-Z.: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos, Solitons Fractals 154, 111692 (2022)

    MathSciNet  MATH  Google Scholar 

  53. Zhang, R.-F., Li, M.-C., Albishari, M., Zheng, F.-C., Lan, Z.-Z.: Generalized lump solutions, classical lump solutions and rogue waves of the (2+ 1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like equation. Appl. Math. Comput. 403, 126201 (2021)

    MathSciNet  MATH  Google Scholar 

  54. Zhang, R.-F., Li, M.-C., Cherraf, A., Vadyala, S.R.: The interference wave and the bright and dark soliton for two integro-differential equation by using BNNM. Nonlinear Dyn. 111(9), 8637–8646 (2023)

    Google Scholar 

  55. Fedele, F.: Rogue waves in oceanic turbulence. Physica D 237(14–17), 2127–2131 (2008)

    MathSciNet  MATH  Google Scholar 

  56. Yan, Z.-Y.: Financial rogue waves. Commun. Theor. Phys. 54(5), 947–949 (2010)

    MATH  Google Scholar 

  57. Liu, B., Zhang, X.-E., Wang, B., Lü, X.: Rogue waves based on the coupled nonlinear Schrödinger option pricing model with external potential. Mod. Phys. Lett. B 36(15), 2250057 (2022)

    Google Scholar 

  58. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450(7172), 1054–1057 (2007)

  59. Wen, L., Li, L., Li, Z.-D., Song, S.-W., Zhang, X.-F., Liu, W.: Matter rogue wave in Bose-Einstein condensates with attractive atomic interaction. Eur. Phys. J. D 64, 473–478 (2011)

    Google Scholar 

  60. Baronio, F., Wabnitz, S., Kodama, Y.: Optical Kerr spatiotemporal dark-lump dynamics of hydrodynamic origin. Phys. Rev. Lett. 116(17), 173901 (2016)

    Google Scholar 

  61. Zhao, Z., He, L., Gao, Y.: Rogue wave and multiple lump solutions of the (2+1)-dimensional Benjamin-Ono equation in fluid mechanics. Complexity 2019, 8249635 (2019)

    MATH  Google Scholar 

  62. Chen, S.-J., Lü, X., Yin, Y.-H.: Dynamic behaviors of the lump solutions and mixed solutions to a (2+ 1)-dimensional nonlinear model. Commun. Theor. Phys. 75(5), 055005 (2023)

    MathSciNet  MATH  Google Scholar 

  63. Beals, R., Sattinger, D.H., Szmigielski, J.: Multipeakons and the classical moment problem. Adv. Math. 154(2), 229–257 (2000)

    MathSciNet  MATH  Google Scholar 

  64. Gui, G., Liu, Y., Olver, P.J., Qu, C.: Wave-breaking and peakons for a modified Camassa–Holm equation. Commun. Math. Phys. 319, 731–759 (2013)

    MathSciNet  MATH  Google Scholar 

  65. Rodriguez, J.N., Omel’yanov, G.: General Degasperis-Procesi equation and its solitary wave solutions. Chaos, Solitons & Fractals 118, 41–46 (2019)

    MathSciNet  MATH  Google Scholar 

  66. Yulin, A., Konotop, V.: Conservative and PT-symmetric compactons in waveguide networks. Opt. Lett. 38(22), 4880–4883 (2013)

    Google Scholar 

  67. Speight, J.: Compactons and semi-compactons in the extreme baby Skyrme model. J. Phys. A: Math. Theor. 43(40), 405201 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Subramanian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivatharani, B., Ranjore, J.S., Asokan, N. et al. Painlevé analysis and new class of novel solutions for (2+1)-dimensional 3-component coupled nonlinear Maccari’s system. Nonlinear Dyn 111, 18215–18229 (2023). https://doi.org/10.1007/s11071-023-08681-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08681-7

Keywords

Navigation