Skip to main content
Log in

Nonlinear vibration analysis of the shaft-bearing-pedestal coupled system with inclined shaft current damage

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The randomness of the shaft current damage on the bearing raceway results in a certain inclination of the damage. To accurately characterize inclined shaft current damage, a mathematical model of inclined shaft current damage is proposed, and a dynamic model of shaft-bearing-pedestal (SBP) coupled system with inclined shaft current damage is proposed. Then, the practicability of the model is verified by the experimental measurement results. Finally, the influence of inclination degree of shaft current damage, length of damage, load, and rotating speed on the dynamic performance of the SBP coupled system is analyzed. The results show that the introduction of an inclination angle makes the vibration response of the SBP coupled system significantly enhanced. As the inclination angle of the shaft current damage on the bearing inner or outer ring changes from 90° to 15°, the SBP coupled system gradually transits from stable quasi-periodic motion to chaotic motion. With the increase of rotating speed, the number and amplitude of closed loops of the phase diagram track increase gradually, and the increase of speed further worsens the motion state of the SBP coupled system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article. The processed data are available from the corresponding author upon request.

References

  1. Gao, P., Chen, Y.S., Hou, L.: Nonlinear thermal behaviors of the inter-shaft bearing in a dual-rotor system subjected to the dynamic load. Nonlinear Dyn. 101(1), 191–209 (2020)

    Google Scholar 

  2. Mo, S., Zhang, Y.X., Song, Y.L., Song, W.H., Huang, Y.S.: Nonlinear vibration and primary resonance analysis of non-orthogonal face gear-rotor-bearing system. Nonlinear Dyn. 108(4), 3367–3389 (2022)

    Google Scholar 

  3. Gao, S., Han, Q.K., Zhou, N.N., Zhang, F.B., Yang, Z.H., Chatterton, S., Pennacchi, P.: Dynamic and wear characteristics of self-lubricating bearing cage: effects of cage pocket shape. Nonlinear Dyn. 110(1), 177–200 (2022)

    Google Scholar 

  4. Plazenet, T., Boileau, T., Caironi, C.C., Nahid-Mobarakeh, B.: Influencing parameters on discharge bearing currents in inverter-fed induction motors. IEEE Trans. Energy Convers. 36(2), 940–949 (2021)

    Google Scholar 

  5. Prudhom, A., Antonino-Daviu, J., Razik, H., Climente-Alarcon, V.: Time-frequency vibration analysis for the detection of motor damages caused by bearing currents. Mech. Syst. Signal Process. 84, 747–762 (2017)

    Google Scholar 

  6. Yi, H.M., Hou, L., Gao, P., Chen, Y.S.: Nonlinear resonance characteristics of a dual-rotor system with a local defect on the inner ring of the inter-shaft bearing. Chin. J. Aeronaut. 34(12), 110–124 (2021)

    Google Scholar 

  7. Yang, R., Jin, Y.L., Hou, L., Chen, Y.S.: Advantages of pulse force model over geometrical boundary model in a rigid rotor-ball bearing system. Int. J. Non-Linear Mech. 102, 159–169 (2018)

    Google Scholar 

  8. Li, F.J., Li, X.P., Su, J., Shang, D.Y.: Analytical investigation on dynamic characteristics of cylindrical roller bearing-pedestal system under different working conditions. J. Braz. Soc. Mech. Sci. Eng. 44(8), 332 (2022)

    Google Scholar 

  9. Han, J.Y., Liu, Y., Yu, S.H., Zhao, S.Y., Ma, H.: Acoustic-vibration analysis of the gear-bearing-housing coupled system. Appl. Acoust. 178, 108024 (2021)

    Google Scholar 

  10. Pan, W.J., Li, X.P., Wang, L.L., Yang, Z.M.: Nonlinear response analysis of gear-shaft-bearing system considering tooth contact temperature and random excitations. Appl. Math. Model. 68, 113–136 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Fang, B., Zhang, J.H., Yan, K., Hong, J., Wang, M.Y.: A comprehensive study on the speed-varying stiffness of ball bearing under different load conditions. Mech. Mach. Theory 136, 1–13 (2019)

    Google Scholar 

  12. Xu, H.Y., Yang, Y., Ma, H., Luo, Z., Li, X.P., Han, Q.K., Wen, B.C.: Vibration characteristics of bearing-rotor systems with inner ring dynamic misalignment. Int. J. Mech. Sci. 230, 107536 (2022)

    Google Scholar 

  13. Mo, S., Zhang, T., Jin, G.G., Cao, X.L., Gao, H.J.: Analytical investigation on load sharing characteristics of herringbone planetary gear train with flexible support and floating sun gear. Mech. Mach. Theory 144, 103670 (2020)

    Google Scholar 

  14. Bai, X.T., Wu, Y.H., Rosca, I.C., Zhang, K., Shi, H.T.: Investigation on the effects of the ball diameter difference in the sound radiation of full ceramic bearings. J. Sound Vib. 450, 231–250 (2019)

    Google Scholar 

  15. Yang, R., Hou, L., Jin, Y.L., Chen, Y.S., Zhang, Z.Y.: The varying compliance resonance in a ball bearing rotor system affected by different ball numbers and rotor eccentricities. J. Tribol.-Trans. ASME. 140(5), 051101 (2018)

    Google Scholar 

  16. Jin, Y.L., Lu, Z.Y., Yang, R., Hou, L., Chen, Y.S.: A new nonlinear force model to replace the Hertzian contact model in a rigid-rotor ball bearing system. Appl. Math. Mech. 39(3), 365–378 (2018)

    MathSciNet  Google Scholar 

  17. Zhang, X.C., Li, H.W., Meng, W.Y., Liu, Y.F., Zhou, P., He, C., Zhao, Q.B.: Research on fault diagnosis of rolling bearing based on lightweight convolutional neural network. J. Braz. Soc. Mech. Sci. Eng. 44(10), 462 (2022)

    Google Scholar 

  18. Xie, Y.H., Xu, L.X., Deng, Y.Q.: A dynamic approach for evaluating the moment rigidity and rotation precision of a bearing-planetary frame rotor system used in RV reducer. Mech. Mach. Theory 173, 104851 (2022)

    Google Scholar 

  19. Ouyang, T.C., Su, Z.X., Li, S.Y., Huang, G.C., Chen, N.: Experimental and numerical investigations on dynamic characteristics of gear-roller-bearing system. Mech. Mach. Theory 140, 730–746 (2019)

    Google Scholar 

  20. Xu, H.Y., Wang, P.F., Yang, Y., Ma, H., Luo, Z., Han, Q.K., Wen, B.C.: Effects of supporting stiffness of deep groove ball bearings with raceway misalignment on vibration behaviors of a gear-rotor system. Mech. Mach. Theory 177, 105041 (2022)

    Google Scholar 

  21. Wang, H., Han, Q.K., Zhou, D.N.: Nonlinear dynamic modeling of rotor system supported by angular contact ball bearings. Mech. Syst. Signal Process. 85, 16–40 (2017)

    Google Scholar 

  22. Jin, Y.L., Liu, Z.W., Yang, Y., Li, F.S., Chen, Y.S.: Nonlinear vibrations of a dual-rotor-bearing-coupling misalignment system with blade-casing rubbing. J. Sound Vib. 497, 115948 (2021)

    Google Scholar 

  23. Hou, L., Chen, Y.S., Lu, Z.Y., Li, Z.G.: Bifurcation analysis for 2:1 and 3:1 super-harmonic resonances of an aircraft cracked rotor system due to maneuver load. Nonlinear Dyn. 81, 531–547 (2015)

    MATH  Google Scholar 

  24. Cheng, H.C., Zhang, Y.M., Lu, W.J., Yang, Z.: Mechanical characteristics and nonlinear dynamic response analysis of rotor-bearing-coupling system. Appl. Math. Model. 93, 708–727 (2021)

    MathSciNet  MATH  Google Scholar 

  25. Yu, T.J., Zhou, S., Zhang, W., Yang, X.D.: Multi-pulse chaotic dynamics of an unbalanced Jeffcott rotor with gravity effect. Nonlinear Dyn. 87, 647–664 (2017)

    MATH  Google Scholar 

  26. Liu, J., Xue, L., Xu, Z.D., Wu, H., Pan, G.: Vibration characteristics of a high-speed flexible angular contact ball bearing with the manufacturing error. Mech. Mach. Theory 162, 104335 (2021)

    Google Scholar 

  27. Miao, H.H., Wang, C.Y., Li, C.Y., Yao, G., Zhang, X.L., Liu, Z.D., Xu, M.T.: Dynamic modeling and nonlinear vibration analysis of spindle system during ball end milling process. Int. J. Adv. Manuf. Technol. 121, 7867–7889 (2022)

    Google Scholar 

  28. Wu, X.G., Qin, Y., Luo, J., Wang, S.L., Chen, B.J.: Fault dynamic model of high-speed rolling bearing by a compound displacement excitation function considering the effect of defect roughness. Mech. Mach. Theory 177, 105061 (2022)

    Google Scholar 

  29. Petersen, D., Howard, C., Sawalhi, N., Ahmadi, A.M., Singh, S.: Analysis of bearing stiffness variations, contact forces and vibrations in radially loaded double row rolling element bearings with raceway defects. Mech. Syst. Signal Process. 50–51, 139–160 (2015)

    Google Scholar 

  30. Rafsanjani, A., Abbasion, S., Farshidianfa, A., Moeenfard, H.: Nonlinear dynamic modeling of surface defects in rolling element bearing systems. J. Sound Vib. 319, 1150–1174 (2009)

    Google Scholar 

  31. Yang, R., Jin, Y.L., Hou, L., Chen, Y.S.: Study for ball bearing outer race characteristic defect frequency based on nonlinear dynamics analysis. Nonlinear Dyn. 90(2), 781–796 (2017)

    Google Scholar 

  32. Luo, M.L., Guo, Y., Wu, X., Na, J.: An analytical model for estimating spalled zone size of rolling element bearing based on dual-impulse time separation. J. Sound Vib. 453, 87–102 (2019)

    Google Scholar 

  33. Qin, Y., Cao, F.L., Wang, Y., Chen, W.W., Chen, H.Z.: Dynamics modelling for deep groove ball bearings with local faults based on coupled and segmented displacement excitation. J. Sound Vib. 447, 1–19 (2019)

    Google Scholar 

  34. Liu, J., Xu, Y.J., An, Y.C., Xu, L.X.: Vibration simulation of a ball bearing with the combined imperfections and velocity fluctuations. Mech. Based Design Struct. Mach. (2022). https://doi.org/10.1080/15397734.2022.2116341

    Article  Google Scholar 

  35. Gao, P., Hou, L., Yang, R., Chen, Y.S.: Local defect modelling and nonlinear dynamic analysis for the inter-shaft bearing in a dual-rotor system. Appl. Math. Model. 68, 29–47 (2019)

    MathSciNet  MATH  Google Scholar 

  36. Tu, W.B., Yu, W.N., Shao, Y.M., Yu, Y.Q.: A nonlinear dynamic vibration model of cylindrical roller bearing considering skidding. Nonlinear Dyn. 103(3), 2299–2313 (2021)

    Google Scholar 

  37. Wen, B.G., Wang, M.L., Zhou, X.W., Ren, H.J., Han, Q.K.: Multi-harmonic motions of bearing cage affected by rotor unbalance. Proceed. Instit. Mech. Eng. Part C-J. Mech. Eng. Science 232(15), 2610–2625 (2018)

    Google Scholar 

  38. Wang, P.F., Xu, H.Y., Yang, Y., Ma, H., He, D., Zhao, X.: Dynamic characteristics of ball bearing-coupling-rotor system with angular misalignment fault. Nonlinear Dyn. 108(4), 3391–3415 (2022)

    Google Scholar 

  39. Miao, H.H., Li, C.Y., Wang, C.Y., Xu, M.T., Zhang, Y.M.: The vibration analysis of the CNC vertical milling machine spindle system considering nonlinear and nonsmooth bearing restoring force. Mech. Syst. Signal Process. 161, 107970 (2021)

    Google Scholar 

  40. Liang, H.Y., Lu, H.H., Feng, K.P., Liu, Y., Li, J.T., Meng, L.: Application of the improved NOFRFs weighted contribution rate based on KL divergence to rotor rub-impact. Nonlinear Dyn. 104(4), 3937–3954 (2021)

    Google Scholar 

  41. Han, Q.K., Li, X.L., Chu, F.L.: Skidding behavior of cylindrical roller bearings under time-variable load conditions. Int. J. Mech. Sci. 135, 203–214 (2018)

    Google Scholar 

  42. Xu, H.Y., Wang, P.F., Ma, H., He, D., Zhao, X., Yang, Y.: Analysis of axial and overturning ultimate load-bearing capacities of deep groove ball bearings under combined loads and arbitrary rotation speed. Mech. Mach. Theory 169, 104665 (2022)

    Google Scholar 

  43. Yang, Y., Liu, H., Ma, H., Wang, P.F., Han, Q.K., Wen, B.C.: Experimental study on vibration characteristics due to cage damage of deep groove ball bearing. Tribol. Int. 185, 108555 (2023)

    Google Scholar 

Download references

Acknowledgements

This research is sponsored by the National Key Research and Development Program of China (2020YFB2007802), and the Fundamental Research Funds for the Central Universities (N2103025).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaopeng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Li, X., Liu, J. et al. Nonlinear vibration analysis of the shaft-bearing-pedestal coupled system with inclined shaft current damage. Nonlinear Dyn 111, 15853–15872 (2023). https://doi.org/10.1007/s11071-023-08677-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08677-3

Keywords

Navigation