Skip to main content
Log in

Dynamic Modeling and Vibration Characteristics Analysis for the Helicopter Horizontal Tail Drive Shaft System with the Ballistic Impact Vertical Penetrating Damage

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

In order to give a qualitative understanding of the ballistic impact damage on system dynamics, and provide ideas for the follow-up study of various types of the ballistic impact damage, dynamic modeling and vibration characteristics analysis for the helicopter horizontal tail drive shaft system with the ballistic impact vertical penetrating damage are obtained. The finite element dynamic model of the horizontal tail drive shaft system (HTDSS) with the ballistic impact vertical penetrating damage (BIVPD) is established. The research results show that the BIVPD causes the mass loss and the stiffness asymmetric of the ballistic impact position; the stiffness asymmetry causes the subharmonic resonance phenomenon; the mass loss causes the increase in the system resonance; and the BIVPD introduces the 2Ω component of the system resonance. The dynamic characteristics of the system with the ballistic impact damage should be analyzed from the axis trajectory, acceleration response and frequency-domain response. The methods and conclusions presented in this paper can provide theoretical support for the dynamic design of the helicopter tail drive shaft system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 52005253).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupeng Zhu.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship and/or publication of this paper.

Appendix

Appendix

This part gives the detail expression of each matrix in the text. It should be noted that for a typical Rayleigh beam element considering the gyroscopic effect, it is only necessary to replace Arest with A and I1 with I2 in the matrix element of the ballistic impact element.

The coordinate transformation relationship between the rotating coordinate system and the fixed coordinate system is as follows

$$T = \left[ {\begin{array}{*{20}c} {T_{0} } & {} & {} & {} \\ {} & {T_{0} } & {} & {} \\ {} & {} & {T_{0} } & {} \\ {} & {} & {} & {T_{0} } \\ \end{array} } \right]$$
(20)

where

$$T_{0} { = }\left[ {\begin{array}{*{20}c} {\cos \left( {\Omega t} \right)} & { - \sin \left( {\Omega t} \right)} \\ {\sin \left( {\Omega t} \right)} & {\cos \left( {\Omega t} \right)} \\ \end{array} } \right]$$

The gravity vectors are as follows

$$\begin{aligned} \left\{ {Q_{{\text{g}}} } \right\} & = \rho A_{{\text{e}}} l\left\{ {\begin{array}{*{20}l} 0 \hfill & { - \frac{1}{2}} \hfill & \frac{l}{12} \hfill & 0 \hfill & 0 \hfill & { - \frac{1}{2}} \hfill & \frac{l}{12} \hfill & 0 \hfill \\ \end{array} } \right\}^{{\text{T}}} \\ \left\{ {Q_{{{\text{bg}}}} } \right\} & = \rho A_{{{\text{rest}}}} l\left\{ {\begin{array}{*{20}l} 0 \hfill & { - \frac{1}{2}} \hfill & \frac{l}{12} \hfill & 0 \hfill & 0 \hfill & { - \frac{1}{2}} \hfill & \frac{l}{12} \hfill & 0 \hfill \\ \end{array} } \right\}^{{\text{T}}} \\ \end{aligned}$$
(21)

The displacement offset vector is as follows

$$\left\{ {q^{{\text{e}}} } \right\}{ = }\left[ { - e{\text{cos}}\left( {\Omega t} \right)\;\;e{\text{sin}}\left( {\Omega t} \right)\;\;0\;\;0\;\; - e{\text{cos}}\left( {\Omega t} \right)\;\;e{\text{sin}}\left( {\Omega t} \right)\;\;0\;\;0} \right]^{{\text{T}}}$$
(22)

The unbalance force vectors are as follows

$$\left\{ {Q_{{{\text{bu}}}} } \right\} = \rho A_{{{\text{rest}}}} le\Omega^{2} \left[ { - \cos \left( {\Omega t} \right)\;\;\sin \left( {\Omega t} \right)\;\;0\;\;0\;\; - \cos \left( {\Omega t} \right)\;\;\sin \left( {\Omega t} \right)\;\;0\;\;0} \right]^{{\text{T}}}$$
(23)
$$\left\{ {Q_{{\text{u}}} } \right\} = m_{{\text{e}}} e_{0} \Omega^{2} \left[ { - \cos \left( {\Omega t} \right)\;\;\sin \left( {\Omega t} \right)\;\;0\;\;0\;\; - \cos \left( {\Omega t} \right)\;\;\sin \left( {\Omega t} \right)\;\;0\;\;0} \right]^{{\text{T}}}$$
(24)

The specific expressions of inertia, stiffness and gyroscopic matrices of ballistic impact element are as follows

$$M^{{\text{r}}} = \frac{\rho }{30l}\left[ {\begin{array}{*{20}c} {36I_{{\overline{x}}} } & 0 & 0 & {3lI_{{\overline{x}}} } & { - 36I_{{\overline{x}}} } & 0 & 0 & {3lI_{{\overline{x}}} } \\ 0 & {36I_{{\overline{y}}} } & { - 3lI_{{\overline{y}}} } & 0 & 0 & { - 36I_{{\overline{y}}} } & { - 3lI_{{\overline{y}}} } & 0 \\ 0 & { - 3lI_{{\overline{y}}} } & {4l^{2} I_{{\overline{y}}} } & 0 & 0 & {3lI_{{\overline{y}}} } & { - l^{2} I_{{\overline{y}}} } & 0 \\ {3lI_{{\overline{x}}} } & 0 & 0 & {4l^{2} I_{{\overline{x}}} } & { - 3lI_{{\overline{x}}} } & 0 & 0 & { - l^{2} I_{{\overline{x}}} } \\ { - 36I_{{\overline{x}}} } & 0 & 0 & { - 3lI_{x} } & {36I_{{\overline{x}}} } & 0 & 0 & { - 3lI_{{\overline{x}}} } \\ 0 & { - 36I_{{\overline{y}}} } & {3lI_{{\overline{y}}} } & 0 & 0 & {36I_{{\overline{y}}} } & {3lI_{{\overline{y}}} } & 0 \\ 0 & { - 3lI_{{\overline{y}}} } & { - l^{2} I_{{\overline{y}}} } & 0 & 0 & {3lI_{{\overline{y} }} } & {4l^{2} I_{{\overline{y}}} } & 0 \\ {3lI_{{\overline{x} }} } & 0 & 0 & { - l^{2} I_{x} } & { - 3lI_{x} } & 0 & 0 & {4l^{2} I_{x} } \\ \end{array} } \right]$$
(26)
$$M_{{{\text{r0}}}}^{{\text{f}}} = \frac{{\rho I_{1} }}{30l}\left[ {\begin{array}{*{20}c} {36} & 0 & 0 & {3l} & { - 36} & 0 & 0 & {3l} \\ 0 & {36} & { - 3l} & 0 & 0 & { - 36} & { - 3l} & 0 \\ 0 & { - 3l} & {4l^{2} } & 0 & 0 & {3l} & { - l^{2} } & 0 \\ {3l} & 0 & 0 & {4l^{2} } & { - 3l} & 0 & 0 & { - l^{2} } \\ { - 36} & 0 & 0 & { - 3l} & {36} & 0 & 0 & { - 3l} \\ 0 & { - 36} & {3l} & 0 & 0 & {36} & {3l} & 0 \\ 0 & { - 3l} & { - l^{2} } & 0 & 0 & {3l} & {4l^{2} } & 0 \\ {3l} & 0 & 0 & { - l^{2} } & { - 3l} & 0 & 0 & {4l^{2} } \\ \end{array} } \right]$$
(27)
$$M_{{{\text{r1}}}}^{{\text{f}}} = \frac{{\rho I_{2} }}{30l}\left[ {\begin{array}{*{20}c} {36} & 0 & 0 & {3l} & { - 36} & 0 & 0 & {3l} \\ 0 & { - 36} & {3l} & 0 & 0 & {36} & {3l} & 0 \\ 0 & {3l} & { - 4l^{2} } & 0 & 0 & { - 3l} & {l^{2} } & 0 \\ {3l} & 0 & 0 & {4l^{2} } & { - 3l} & 0 & 0 & { - l^{2} } \\ { - 36} & 0 & 0 & { - 3l} & {36} & 0 & 0 & { - 3l} \\ 0 & {36} & { - 3l} & 0 & 0 & { - 36} & { - 3l} & 0 \\ 0 & {3l} & {l^{2} } & 0 & 0 & { - 3l} & { - 4l^{2} } & 0 \\ {3l} & 0 & 0 & { - l^{2} } & { - 3l} & 0 & 0 & {4l^{2} } \\ \end{array} } \right]$$
(28)
$$M_{{{\text{r2}}}}^{{\text{f}}} = \frac{{\rho I_{2} }}{30l}\left[ {\begin{array}{*{20}c} 0 & {36} & { - 3l} & 0 & 0 & { - 36} & { - 3l} & 0 \\ {36} & 0 & 0 & {3l} & { - 36} & 0 & 0 & {3l} \\ { - 3l} & 0 & 0 & { - 4l^{2} } & {3l} & 0 & 0 & {l^{2} } \\ 0 & {3l} & { - 4l^{2} } & 0 & 0 & { - 3l} & {l^{2} } & 0 \\ 0 & { - 36} & {3l} & 0 & 0 & {36} & {3l} & 0 \\ { - 36} & 0 & 0 & { - 3l} & {36} & 0 & 0 & { - 3l} \\ { - 3l} & 0 & 0 & {l^{2} } & {3l} & 0 & 0 & { - 4l^{2} } \\ 0 & {3l} & {l^{2} } & 0 & 0 & { - 3l} & { - 4l^{2} } & 0 \\ \end{array} } \right]$$
(29)
$$M_{t}^{{\text{f}}} = \frac{{\rho A_{{{\text{rest}}}} l}}{420}\left[ {\begin{array}{*{20}c} {156} & 0 & 0 & {22l} & {54} & 0 & 0 & { - 13l} \\ 0 & {156} & { - 22l} & 0 & 0 & {54} & {13l} & 0 \\ 0 & { - 22l} & {4l^{2} } & 0 & 0 & { - 13l} & { - 3l^{2} } & 0 \\ {22l} & 0 & 0 & {4l^{2} } & {13l} & 0 & 0 & { - 3l^{2} } \\ {54} & 0 & 0 & {13l} & {156} & 0 & 0 & { - 22l} \\ 0 & {54} & { - 13l} & 0 & 0 & {156} & {22l} & 0 \\ 0 & {13l} & { - 3l^{2} } & 0 & 0 & {22l} & {4l^{2} } & 0 \\ { - 13l} & 0 & 0 & { - 3l^{2} } & { - 22l} & 0 & 0 & {4l^{2} } \\ \end{array} } \right]$$
(30)
$$K^{{\text{r}}} = \frac{E}{{l^{3} }}\left[ {\begin{array}{*{20}c} {12I_{{\overline{x}}} } & 0 & 0 & {6lI_{{\overline{x}}} } & { - 12I_{{\overline{x}}} } & 0 & 0 & {6lI_{{\overline{x}}} } \\ 0 & {12I_{{\overline{y}}} } & { - 6lI_{{\overline{y}}} } & 0 & 0 & { - 12I_{{\overline{y}}} } & { - 6lI_{{\overline{y}}} } & 0 \\ 0 & { - 6lI_{{\overline{y}}} } & {4l^{2} I_{{\overline{y}}} } & 0 & 0 & {6lI_{{\overline{y}}} } & {2l^{2} I_{{\overline{y}}} } & 0 \\ {6lI_{{\overline{x}}} } & 0 & 0 & {4l^{2} I_{{\overline{x}}} } & { - 6lI_{{\overline{x}}} } & 0 & 0 & {2l^{2} I_{{\overline{x}}} } \\ { - 12I_{{\overline{x}}} } & 0 & 0 & { - 6lI_{{\overline{x}}} } & {12I_{{\overline{x}}} } & 0 & 0 & { - 6lI_{{\overline{x}}} } \\ 0 & { - 12I_{{\overline{y}}} } & {6lI_{{\overline{y}}} } & 0 & 0 & {12I_{{\overline{y}}} } & {6lI_{{\overline{y}}} } & 0 \\ 0 & { - 6lI_{{\overline{y}}} } & {2l^{2} I_{{\overline{y}}} } & 0 & 0 & {6lI_{{\overline{y}}} } & {4l^{2} I_{{\overline{y}}} } & 0 \\ {6lI_{{\overline{x}}} } & 0 & 0 & {2l^{2} I_{{\overline{x}}} } & { - 6lI_{{\overline{x}}} } & 0 & 0 & {4l^{2} I_{{\overline{x}}} } \\ \end{array} } \right]$$
(31)
$$K_{0}^{{\text{f}}} = \frac{{EI_{1} }}{{l^{3} }}\left[ {\begin{array}{*{20}c} {12} & 0 & 0 & {6l} & { - 12} & 0 & 0 & {6l} \\ 0 & {12} & { - 6l} & 0 & 0 & { - 12} & { - 6l} & 0 \\ 0 & { - 6l} & {4l^{2} } & 0 & 0 & {6l} & {2l^{2} } & 0 \\ {6l} & 0 & 0 & {4l^{2} } & { - 6l} & 0 & 0 & {2l^{2} } \\ { - 12} & 0 & 0 & { - 6l} & {12} & 0 & 0 & { - 6l} \\ 0 & { - 12} & {6l} & 0 & 0 & {12} & {6l} & 0 \\ 0 & { - 6l} & {2l^{2} } & 0 & 0 & {6l} & {4l^{2} } & 0 \\ {6l} & 0 & 0 & {2l^{2} } & { - 6l} & 0 & 0 & {4l^{2} } \\ \end{array} } \right]$$
(32)
$$K_{1}^{{\text{f}}} = \frac{{EI_{2} }}{{l^{3} }}\left[ {\begin{array}{*{20}c} {12} & 0 & 0 & {6l} & { - 12} & 0 & 0 & {6l} \\ 0 & { - 12} & {6l} & 0 & 0 & {12} & {6l} & 0 \\ 0 & {6l} & { - 4l^{2} } & 0 & 0 & { - 6l} & { - 2l^{2} } & 0 \\ {6l} & 0 & 0 & {4l^{2} } & { - 6l} & 0 & 0 & {2l^{2} } \\ { - 12} & 0 & 0 & { - 6l} & {12} & 0 & 0 & { - 6l} \\ 0 & {12} & { - 6l} & 0 & 0 & { - 12} & { - 6l} & 0 \\ 0 & {6l} & { - 2l^{2} } & 0 & 0 & { - 6l} & { - 4l^{2} } & 0 \\ {6l} & 0 & 0 & {2l^{2} } & { - 6l} & 0 & 0 & {4l^{2} } \\ \end{array} } \right]$$
(33)
$$K_{2}^{{\text{f}}} = \frac{{EI_{2} }}{{l^{3} }}\left[ {\begin{array}{*{20}c} 0 & {12} & { - 6l} & 0 & 0 & { - 12} & { - 6l} & 0 \\ {12} & 0 & 0 & {6l} & { - 12} & 0 & 0 & {6l} \\ { - 6l} & 0 & 0 & { - 4l^{2} } & {6l} & 0 & 0 & { - 2l^{2} } \\ 0 & {6l} & { - 4l^{2} } & 0 & 0 & { - 6l} & { - 2l^{2} } & 0 \\ 0 & { - 12} & {6l} & 0 & 0 & {12} & {6l} & 0 \\ { - 12} & 0 & 0 & { - 6l} & {12} & 0 & 0 & { - 6l} \\ { - 6l} & 0 & 0 & { - 2l^{2} } & {6l} & 0 & 0 & { - 4l^{2} } \\ 0 & {6l} & { - 2l^{2} } & 0 & 0 & { - 6l} & { - 4l^{2} } & 0 \\ \end{array} } \right]$$
(34)
$$G_{{\text{b}}} = \frac{{\rho I_{1} }}{15l}\left[ {\begin{array}{*{20}c} 0 & {36} & { - 3l} & 0 & 0 & { - 36} & { - 3l} & 0 \\ { - 36} & 0 & 0 & { - 3l} & {36} & 0 & 0 & { - 3l} \\ {3l} & 0 & 0 & {4l^{2} } & { - 3l} & 0 & 0 & { - l^{2} } \\ 0 & {3l} & { - 4l^{2} } & 0 & 0 & { - 3l} & {l^{2} } & 0 \\ 0 & { - 36} & {3l} & 0 & 0 & {36} & {3l} & 0 \\ {36} & 0 & 0 & {3l} & { - 36} & 0 & 0 & {3l} \\ {3l} & 0 & 0 & { - l^{2} } & { - 3l} & 0 & 0 & {4l^{2} } \\ 0 & {3l} & {l^{2} } & 0 & 0 & { - 3l} & { - 4l^{2} } & 0 \\ \end{array} } \right]$$
(35)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Wang, D., Zhu, R. et al. Dynamic Modeling and Vibration Characteristics Analysis for the Helicopter Horizontal Tail Drive Shaft System with the Ballistic Impact Vertical Penetrating Damage. Iran J Sci Technol Trans Mech Eng 47, 1177–1190 (2023). https://doi.org/10.1007/s40997-022-00573-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-022-00573-2

Keywords

Navigation