Skip to main content
Log in

Characteristic analysis and design of nonlinear energy sink with cubic damping considering frequency detuning

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The nonlinear energy sink (NES) is a vibration energy absorber, which is of great significance in vibration reduction applications. In this study, the dynamic analysis of the NES with cubic nonlinear damping considering frequency detuning is investigated, and the effects of external harmonic force and NES parameters on the vibration reduction are given. Firstly, for a 1-dof NES system, through the analysis of the slow flow equation, the influence regularities of the frequency detuning coefficient and the NES parameter on bifurcation are obtained, and the corresponding truncation damping is revealed. For the 2-dof NES case, the effect of the mass distribution between NES on the bifurcation phenomenon of the system is given. For the 2-dof NES case considering frequency detuning, through the incremental harmonic balance method and Floquet theory, the analysis of the number and stability of the solutions is obtained. Secondly, utilizing the multi-scale method to analyze the response of the 1-dof NES case, the effects of the load amplitude variation on the frequency detuning interval are revealed. Meanwhile, using Poincare mapping to analyze the response of the 2-dof NES case, it is revealed that the responses of various parts of the system can be inconsistent, and the 2-dof NES could produce additional strongly modulated response than the 1-dof NES. Lastly, the energy spectrum is applied to verify the vibration reduction of the NES with cubic nonlinear damping, and it also indicates that the 2-dof NES has better vibration reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article.

References

  1. Lu, Z., Wang, Z., Zhou, Y., Lu, X.: Nonlinear dissipative devices in structural vibration control: a review. J. Sound Vib. 423, 18–49 (2018)

    Article  Google Scholar 

  2. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems i, vol. 156. Springer (2008)

    MATH  Google Scholar 

  3. Tang, Y., Wang, G., Yang, T., Ding, Q.: Nonlinear dynamics of three-directional functional graded pipes conveying fluid with the integration of piezoelectric attachment and nonlinear energy sink. Nonlinear Dyn. 111(3), 2415–2442 (2023)

    Article  Google Scholar 

  4. Al-Shudeifat, M.A., Saeed, A.S.: Frequency-energy plot and targeted energy transfer analysis of coupled bistable nonlinear energy sink with linear oscillator. Nonlinear Dyn. 105(4), 2877–2898 (2021). https://doi.org/10.1007/s11071-021-06802-8

    Article  Google Scholar 

  5. Cao, Y., Yao, H., Dou, J., Bai, R.: A multi-stable nonlinear energy sink for torsional vibration of the rotor system. Nonlinear Dyn. 110, 1253–1278 (2022)

    Article  Google Scholar 

  6. Bichiou, Y., Hajj, M.R., Nayfeh, A.H.: Effectiveness of a nonlinear energy sink in the control of an aeroelastic system. Nonlinear Dyn. 86, 2161–2177 (2016). https://doi.org/10.1007/s11071-016-2922-y

    Article  MathSciNet  MATH  Google Scholar 

  7. Sun, Y.H., Zhang, Y.W., Ding, H., Chen, L.Q.: Nonlinear energy sink for a flywheel system vibration reduction. J. Sound Vib. 429, 305–324 (2018). https://doi.org/10.1016/j.jsv.2018.05.025

    Article  Google Scholar 

  8. Fang, B., Theurich, T., Krack, M., Bergman, L.A., Vakakis, A.F.: Vibration suppression and modal energy transfers in a linear beam with attached vibro-impact nonlinear energy sinks. Commun. Nonlinear Sci. Numer. Simul. 91, 105415 (2020). https://doi.org/10.1016/j.cnsns.2020.105415

    Article  MathSciNet  MATH  Google Scholar 

  9. Zang, J., Cao, R.Q., Zhang, Y.W.: Steady-state response of a viscoelastic beam with asymmetric elastic supports coupled to a lever-type nonlinear energy sink. Nonlinear Dyn. 105, 1327–1341 (2021). https://doi.org/10.1007/s11071-021-06625-7

    Article  Google Scholar 

  10. Duan, N., Wu, Y., Sun, X.M., Zhong, C.: Vibration control of conveying fluid pipe based on inerter enhanced nonlinear energy sink. IEEE Trans. Circuits Syst. I Regul. Pap. 68(4), 1610–1623 (2021). https://doi.org/10.1109/TCSI.2021.3049268

    Article  Google Scholar 

  11. Al-Shudeifat, M.A.: Nonlinear energy sinks with piecewise-linear nonlinearities. J. Comput. Nonlinear Dyn. 14(12), 124501 (2019). https://doi.org/10.1115/1.4045052

    Article  Google Scholar 

  12. Zeng, Y.-c, Ding, H., Du, R.H., Chen, L.Q.: Micro-amplitude vibration suppression of a bistable nonlinear energy sink constructed by a buckling beam. Nonlinear Dyn. 108(4), 3185–3207 (2022). https://doi.org/10.1007/s11071-022-07378-7

    Article  Google Scholar 

  13. Vaurigaud, B., Ture Savadkoohi, A., Lamarque, C.H.: Targeted energy transfer with parallel nonlinear energy sinks. Part I: design theory and numerical results. Nonlinear Dyn. 66, 763–780 (2011). https://doi.org/10.1007/s11071-011-9949-x

    Article  MathSciNet  MATH  Google Scholar 

  14. Dekemele, K., Habib, G., Loccufier, M.: The periodically extended stiffness nonlinear energy sink. Mech. Syst. Signal Process. 169, 108706 (2022). https://doi.org/10.1016/j.ymssp.2021.108706

    Article  Google Scholar 

  15. Al-Shudeifat, M.A., Saeed, A.S.: Comparison of a modified vibro-impact nonlinear energy sink with other kinds of NESs. Meccanica 56, 735–752 (2021). https://doi.org/10.1007/s11012-020-01193-3

    Article  MathSciNet  Google Scholar 

  16. Wang, G.X., Ding, H., Chen, L.Q.: Nonlinear normal modes and optimization of a square root nonlinear energy sink. Nonlinear Dyn. 104, 1069–1096 (2021). https://doi.org/10.1007/s11071-021-06334-1

    Article  Google Scholar 

  17. Wang, C., González, G.Y., Wittich, C., Moore, K.J.: Energy isolation in a multi-floor nonlinear structure under harmonic excitation. Nonlinear Dyn. 110, 2049–2077 (2022)

    Article  Google Scholar 

  18. Wu, Z., Seguy, S., Paredes, M.: Qualitative analysis of the response regimes and triggering mechanism of bistable NES. Nonlinear Dyn. 109, 323–352 (2022)

    Article  Google Scholar 

  19. Liu, G., Liu, J.K., Wang, L., Lu, Z.R.: A new semi-analytical approach for quasi-periodic vibrations of nonlinear systems. Commun. Nonlinear Sci. Numer. Simul. 103, 105999 (2021). https://doi.org/10.1016/j.cnsns.2021.105999

    Article  MathSciNet  MATH  Google Scholar 

  20. Gendelman, O.V.: Bifurcations of nonlinear normal modes of linear oscillator with strongly nonlinear damped attachment. Nonlinear Dyn. 37, 115–128 (2004). https://doi.org/10.1023/B:NODY.0000042911.49430.25

    Article  MathSciNet  MATH  Google Scholar 

  21. Mamaghani, A.E., Khadem, S.E., Bab, S., Pourkiaee, S.M.: Irreversible passive energy transfer of an immersed beam subjected to a sinusoidal flow via local nonlinear attachment. Int. J. Mech. Sci. (2018). https://doi.org/10.1016/j.ijmecsci.2018.02.032

    Article  Google Scholar 

  22. Kopidakis, G., Aubry, S., Tsironis, G.P.: Targeted energy transfer through discrete breathers in nonlinear systems. Phys. Rev. Lett. 87(16), 165501 (2001). https://doi.org/10.1103/physrevlett.87.165501

    Article  Google Scholar 

  23. Dang, W., Wang, Z., Chen, L., Yang, T.: A high-efficient nonlinear energy sink with a one-way energy converter. Nonlinear Dyn. 109, 2247–2261 (2022)

    Article  Google Scholar 

  24. Dekemele, K., De Keyser, R., Loccufier, M.: Performance measures for targeted energy transfer and resonance capture cascading in nonlinear energy sinks. Nonlinear Dyn. 93, 259–284 (2018). https://doi.org/10.1007/s11071-018-4190-5

    Article  Google Scholar 

  25. Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Kerschen, G., Nucera, F., Tsakirtzis, S., Panagopoulos, P.N.: Passive non-linear targeted energy transfer and its applications to vibration absorption: a review. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 222(2), 77–134 (2008). https://doi.org/10.1243/14644193JMBD118

    Article  Google Scholar 

  26. Jin, Y., Hou, S., Yang, T.: Cascaded essential nonlinearities for enhanced vibration suppression and energy harvesting. Nonlinear Dyn. 103, 1427–1438 (2021). https://doi.org/10.1007/s11071-020-06165-6

    Article  Google Scholar 

  27. Tian, W., Li, Y., Yang, Z., Li, P., Zhao, T.: Suppression of nonlinear aeroelastic responses for a cantilevered trapezoidal plate in hypersonic airflow using an energy harvester enhanced nonlinear energy sink. Int. J. Mech. Sci. 172, 105417 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105417

    Article  Google Scholar 

  28. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., Mojahed, A., Gzal, M.: Nonlinear targeted energy transfer: state of the art and new perspectives. Nonlinear Dyn. 108(2), 711–741 (2022). https://doi.org/10.1007/s11071-022-07216-w

    Article  Google Scholar 

  29. Gendelman, O.V., Gourdon, E., Lamarque, C.H.: Quasiperiodic energy pumping in coupled oscillators under periodic forcing. J. Sound Vib. 294(4–5), 651–662 (2006). https://doi.org/10.1016/j.jsv.2005.11.031

    Article  Google Scholar 

  30. Gendelman, O.V., Starosvetsky, Y.: Quasi-periodic response regimes of linear oscillator coupled to nonlinear energy sink under periodic forcing. J. Appl. Mech. Trans. ASME 74, 325–331 (2007). https://doi.org/10.1115/1.2198546

    Article  MathSciNet  MATH  Google Scholar 

  31. Ture Savadkoohi, A., Lamarque, C.H., Dimitrijevic, Z.: Vibratory energy exchange between a linear and a nonsmooth system in the presence of the gravity. Nonlinear Dyn. 70, 1473–1483 (2012). https://doi.org/10.1007/s11071-012-0548-2

    Article  MathSciNet  Google Scholar 

  32. Gendelman, O.V., Starosvetsky, Y., Feldman, M.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink I: description of response regimes. Nonlinear Dyn. 51, 31–46 (2008). https://doi.org/10.1007/s11071-006-9167-0

    Article  MATH  Google Scholar 

  33. Xiong, H., Kong, X., Yang, Z., Liu, Y.: Response regimes of narrow-band stochastic excited linear oscillator coupled to nonlinear energy sink. Chin. J. Aeronaut. 28(2), 457–468 (2015)

    Article  Google Scholar 

  34. Theurich, T., Vakakis, A.F., Krack, M.: Predictive design of impact absorbers for mitigating resonances of flexible structures using a semi-analytical approach. J. Sound Vib. 516, 116527 (2022). https://doi.org/10.1016/j.jsv.2021.116527

    Article  Google Scholar 

  35. Abdollahi, A., Khadem, S.E., Khazaee, M., Moslemi, A.: On the analysis of a passive vibration absorber for submerged beams under hydrodynamic forces: an optimal design. Eng. Struct. 220, 110986 (2020). https://doi.org/10.1016/j.engstruct.2020.110986

    Article  Google Scholar 

  36. Ding, H., Chen, L.Q.: Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dyn. 100(4), 3061–3107 (2020)

    Article  Google Scholar 

  37. Quinn, D.D., Hubbard, S., Wierschem, N., Al-Shudeifat, M.A., Ott, R.J., Luo, J., Spencer, B.F., McFarland, D.M., Vakakis, A.F., Bergman, L.A.: Equivalent modal damping, stiffening and energy exchanges in multi-degree-of-freedom systems with strongly nonlinear attachments. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 226(2), 122–146 (2012). https://doi.org/10.1177/1464419311432671

    Article  Google Scholar 

  38. Starosvetsky, Y., Gendelman, O.V.: Vibration absorption in systems with a nonlinear energy sink: nonlinear damping. J. Sound Vib. 324(3–5), 916–939 (2009). https://doi.org/10.1016/j.jsv.2009.02.052

    Article  Google Scholar 

  39. Al-Shudeifat, M.A.: Amplitudes decay in different kinds of nonlinear oscillators. J. Vib. Acoust. Trans. ASME (2015). https://doi.org/10.1115/1.4029288

    Article  Google Scholar 

  40. Tang, S., Zhu, S., Lou, J.: Study on dynamics of a nonlinear damping absorber coupled to the linear system. Adv. Mater. Res. 143, 763–767 (2011)

    Google Scholar 

  41. Zhang, Y., Kong, X., Yue, C., Xiong, H.: Dynamic analysis of 1-dof and 2-dof nonlinear energy sink with geometrically nonlinear damping and combined stiffness. Nonlinear Dyn. 105(1), 167–190 (2021)

    Article  Google Scholar 

  42. Wierschem, N.E., Quinn, D.D., Hubbard, S.A., Al-Shudeifat, M.A., McFarland, D.M., Luo, J., Fahnestock, L.A., Spencer, B.F., Vakakis, A.F., Bergman, L.A.: Passive damping enhancement of a two-degree-of-freedom system through a strongly nonlinear two-degree-of-freedom attachment. J. Sound Vib. 331(25), 5393–5407 (2012). https://doi.org/10.1016/j.jsv.2012.06.023

    Article  Google Scholar 

  43. Li, T., Gourc, E., Seguy, S., Berlioz, A.: Dynamics of two vibro-impact nonlinear energy sinks in parallel under periodic and transient excitations. Int. J. Non-linear Mech. 90, 100–110 (2017). https://doi.org/10.1016/j.ijnonlinmec.2017.01.010

    Article  Google Scholar 

  44. Tsakirtzis, S., Panagopoulos, P.N., Kerschen, G., Gendelman, O., Vakakis, A.F., Bergman, L.A.: Complex dynamics and targeted energy transfer in linear oscillators coupled to multi-degree-of-freedom essentially nonlinear attachments. Nonlinear Dyn. 48, 285–318 (2007). https://doi.org/10.1007/s11071-006-9089-x

    Article  MathSciNet  MATH  Google Scholar 

  45. Gendelman, O.V., Sapsis, T., Vakakis, A.F., Bergman, L.A.: Enhanced passive targeted energy transfer in strongly nonlinear mechanical oscillators. J. Sound Vib. 330(1), 1–8 (2011). https://doi.org/10.1016/j.jsv.2010.08.014

    Article  Google Scholar 

  46. Zhang, Y.C., Kong, X.R., Tang, S.Y.: Vibration suppression using targeted energy transfer in a two-degree-of-freedom unequal mass nonlinear vibration absorber. In: 61st International Astronautical Congress 2010, IAC 2010 (2010)

  47. Ghandchi Tehrani, M., Elliott, S.J.: Extending the dynamic range of an energy harvester using nonlinear damping. J. Sound Vib. 333(3), 623–629 (2014). https://doi.org/10.1016/j.jsv.2013.09.035

    Article  Google Scholar 

  48. Mallik, A.K., Kher, V., Puri, M., Hatwal, H.: On the modelling of non-linear elastomeric vibration isolators. J. Sound Vib. 219(2), 239–253 (1999). https://doi.org/10.1006/jsvi.1998.1883

    Article  Google Scholar 

  49. Elliott, S.J., Tehrani, M.G., Langley, R.S.: Nonlinear damping and quasi-linear modelling. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 373(2051), 20140402 (2015). https://doi.org/10.1098/rsta.2014.0402

  50. Liu, Y., Chen, G., Tan, X.: Dynamic analysis of the nonlinear energy sink with local and global potentials: geometrically nonlinear damping. Nonlinear Dyn. 101, 2157–2180 (2020). https://doi.org/10.1007/s11071-020-05876-0

  51. Kong, X., Li, H., Wu, C.: Dynamics of 1-dof and 2-dof energy sink with geometrically nonlinear damping: application to vibration suppression. Nonlinear Dyn. 91, 733–754 (2018). https://doi.org/10.1007/s11071-017-3906-2

    Article  Google Scholar 

  52. Dou, C., Fan, J., Li, C., Cao, J., Gao, M.: On discontinuous dynamics of a class of friction-influenced oscillators with nonlinear damping under bilateral rigid constraints. Mech. Mach. Theory 147, 103750 (2020). https://doi.org/10.1016/j.mechmachtheory.2019.103750

    Article  Google Scholar 

  53. Starosvetsky, Y., Gendelman, O.V.: Response regimes of linear oscillator coupled to nonlinear energy sink with harmonic forcing and frequency detuning. J. Sound Vib. 315(3), 746–765 (2008). https://doi.org/10.1016/j.jsv.2007.12.023

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianren Kong.

Ethics declarations

Conflict of interest

We have no competing interests. All authors gave final approval for publication and agree to be accountable for all aspects of the work presented herein.

Human and animal rights

No human or animal subjects were used in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Kong, X., Yue, C. et al. Characteristic analysis and design of nonlinear energy sink with cubic damping considering frequency detuning. Nonlinear Dyn 111, 15817–15836 (2023). https://doi.org/10.1007/s11071-023-08673-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08673-7

Keywords

Navigation