Skip to main content
Log in

Computational aspects of the approximate analytic solutions of the SIR model: applications to modelling of COVID-19 outbreaks

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The SIR (susceptible–infected–recovered) is one of the simplest models for epidemic outbreaks. The present paper demonstrates the parametric solution of the model in terms of quadratures and derives a double exponential analytical asymptotic solution for the I-variable, which is valid on the entire real line. Moreover, the double exponential solution can be used successfully for parametric estimation either in stand-alone mode or as a preliminary step in the parametric estimation using numerical inversion of the parametric solution. A second, refined, asymptotic solution involving exponential gamma kernels was also demonstrated. The approach was applied to the coronavirus disease 2019 (COVID-19) pandemic in six European countries—Belgium, Italy, Sweden, France, Spain and Bulgaria in the period 2020-2021.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The COVID datasets were downloaded from ECDC using https://opendata.ecdc.europa.eu/covid19/casedistribution/csv. The analysis pertains to the version from 14 Dec 2020, which covers the period 1 Jan 2020–14 Dec 2021. A second dataset was downloaded on 15 Sept 2021. Inspection of the dataset demonstrated that the new data started from 1 March 2021 and covers the 31 countries from the European Economic Area (EEA).

References

  1. Yadav, S.K., Akhter, Y.: Statistical modeling for the prediction of infectious disease dissemination with special reference to COVID-19 spread. Front. Public Health (2021). https://doi.org/10.3389/fpubh.2021.645405

    Article  Google Scholar 

  2. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A 115(772), 700–721 (1927). https://doi.org/10.1098/rspa.1927.0118. (Containing Papers of a Mathematical and Physical Character)

    Article  MATH  Google Scholar 

  3. Martcheva, M.: An Introduction to Mathematical Epidemiology. Springer (2015). https://doi.org/10.1007/978-1-4899-7612-3

    Book  MATH  Google Scholar 

  4. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42(4), 599–653 (2000). https://doi.org/10.1137/s0036144500371907

    Article  MathSciNet  MATH  Google Scholar 

  5. Rodrigues, H.S.: Application of SIR epidemiological model: new trends. Int. J. Appl. Math. Inform. 10, 92–97 (2016)

    Google Scholar 

  6. Ahmetolan, S., Bilge, A.H., Demirci, A., Peker-Dobie, A., Ergonul, O.: What can we estimate from fatality and infectious case data using the susceptible-infected-removed (SIR) model? A case study of COVID-19 pandemic. Front. Med. (2020). https://doi.org/10.3389/fmed.2020.556366

    Article  Google Scholar 

  7. Nguemdjo, U., Meno, F., Dongfack, A., Ventelou, B.: Simulating the progression of the COVID-19 disease in Cameroon using SIR models. PLoS ONE 15(8), e0237832 (2020). https://doi.org/10.1371/journal.pone.0237832

    Article  Google Scholar 

  8. Postnikov, E.B.: Estimation of COVID-19 dynamics on a back-of-envelope: does the simplest SIR model provide quantitative parameters and predictions? Chaos Solitons Fractals 135, 109841 (2020). https://doi.org/10.1016/j.chaos.2020.109841

    Article  MathSciNet  Google Scholar 

  9. Record, N.R., Pershing, A.: A note on the effects of epidemic forecasts on epidemic dynamics. PeerJ 8, e9649 (2020). https://doi.org/10.7717/peerj.9649

    Article  Google Scholar 

  10. Barlow, N.S., Weinstein, S.J.: Accurate closed-form solution of the SIR epidemic model. Phys. D Nonlinear Phenom. 408, 132540 (2020). https://doi.org/10.1016/j.physd.2020.132540

    Article  MathSciNet  MATH  Google Scholar 

  11. Kudryashov, N.A., Chmykhov, M.A., Vigdorowitsch, M.: Analytical features of the SIR model and their applications to COVID-19. Appl. Math. Model. 90, 466–473 (2021). https://doi.org/10.1016/j.apm.2020.08.057

    Article  MathSciNet  MATH  Google Scholar 

  12. Carletti, T., Fanelli, D., Piazza, F.: COVID-19: the unreasonable effectiveness of simple models. Chaos Solitons Fractals X 5, 100034 (2020). https://doi.org/10.1016/j.csfx.2020.100034

    Article  Google Scholar 

  13. Prodanov, D.: Analytical parameter estimation of the SIR epidemic model. Applications to the COVID-19 pandemic. Entropy (2020). https://doi.org/10.3390/e23010059

    Article  MathSciNet  Google Scholar 

  14. Harko, T., Lobo, F.S.N., Mak, M.K.: Exact analytical solutions of the susceptible–infected–recovered (SIR) epidemic model and of the SIR model with equal death and birth rates. Appl. Math. Comput. 236, 184–194 (2014). https://doi.org/10.1016/j.amc.2014.03.030

    Article  MathSciNet  MATH  Google Scholar 

  15. Kröger, M.: Analytical solution of the SIR-model for the temporal evolution of epidemics. Part A: time-independent reproduction factor. J. Phys. A Math. Theor. 53(50), 505601 (2020). https://doi.org/10.1088/1751-8121/abc65d

    Article  MathSciNet  MATH  Google Scholar 

  16. Prodanov, D.: Comments on some analytical and numerical aspects of the SIR model. Appl. Math. Model. 95, 236–243 (2021). https://doi.org/10.1016/j.apm.2021.02.004

    Article  MathSciNet  MATH  Google Scholar 

  17. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert W function. Adv. Comput. Math. 5(1), 329–359 (1996). https://doi.org/10.1007/bf02124750

    Article  MathSciNet  MATH  Google Scholar 

  18. Kudryashov, N.A., Chmykhov, M., Vigdorowitsch, M.: An estimative (warning) model for recognition of pandemic nature of virus infections. Int. J. Nonlinear Sci. Numer. Simul. (2021). https://doi.org/10.1515/ijnsns-2020-0154

    Article  MATH  Google Scholar 

  19. Daftardar-Gejji, V., Jafari, H.: An iterative method for solving nonlinear functional equations. J. Math. Anal. Appl. 316(2), 753–763 (2006). https://doi.org/10.1016/j.jmaa.2005.05.009

    Article  MathSciNet  MATH  Google Scholar 

  20. Vitanov, N.K., Vitanov, K.N.: Epidemic waves and exact solutions of a sequence of nonlinear differential equations connected to the SIR model of epidemics. Entropy 25(3), 438 (2023). https://doi.org/10.3390/e25030438

    Article  MathSciNet  Google Scholar 

  21. Pollard, J.H., Valkovics, E.J.: The Gompertz distribution and its application. Genus 48(3/4), 15–28 (1992). https://doi.org/10.2307/29789100

    Article  Google Scholar 

  22. Kirkwood, T.B.L.: Deciphering death: a commentary on Gompertz (1825) ‘on the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies’. Philos. Trans. R. Soc. B Biol. Sci. 370(1666), 20140379 (2015). https://doi.org/10.1098/rstb.2014.0379

    Article  Google Scholar 

  23. Borisov, M., Markov, S.: The two-step exponential decay reaction network: analysis of the solutions and relation to epidemiological SIR models with logistic and Gompertz type infection contact patterns. J. Math. Chem. 59(5), 1283–1315 (2021). https://doi.org/10.1007/s10910-021-01240-8

    Article  MathSciNet  MATH  Google Scholar 

  24. Gumbel, E.: Les valeurs extrm̂es des distributions statistiques. Ann. l’Inst. Henri Poincaré 5(2), 115–158 (1935)

    MATH  Google Scholar 

  25. Giubilei, R.: Closed form solution of the SIR model for the COVID-19 outbreak in Italy. https://doi.org/10.1101/2020.06.06.20124313

  26. Corless, R.M., Jeffrey, D.J.: The wright \(\omega \) function. In: Lecture Notes in Computer Science. Springer, Berlin, pp. 76–89 (2002). https://doi.org/10.1007/3-540-45470-5_10

  27. Prodanov, D.: Numerics for the SIR model. Zenodo (2020). https://doi.org/10.5281/ZENODO.8036497

    Article  Google Scholar 

  28. Piessens, R., Doncker-Kapenga, E., Überhuber, C.W., Kahaner, D.K.: Quadpack. Springer, Berlin (1983). https://doi.org/10.1007/978-3-642-61786-7

    Book  MATH  Google Scholar 

  29. Errico, D.: Fminsearchbnd, https://www.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd-fminsearchcon, mATLAB Central Exchange (2012)

  30. Huppert, A., Katriel, G.: Mathematical modelling and prediction in infectious disease epidemiology. Clin. Microbiol. Infect. 19(11), 999–1005 (2013). https://doi.org/10.1111/1469-0691.12308

    Article  Google Scholar 

  31. Fanelli, D., Piazza, F.: Analysis and forecast of COVID-19 spreading in China, Italy and France. Chaos Solitons Fractals 134, 109761 (2020). https://doi.org/10.1016/j.chaos.2020.109761

    Article  MathSciNet  MATH  Google Scholar 

  32. Cooper, I., Mondal, A., Antonopoulos, C.G.: A SIR model assumption for the spread of COVID-19 in different communities. Chaos Solitons Fractals 139, 110057 (2020). https://doi.org/10.1016/j.chaos.2020.110057

    Article  MathSciNet  Google Scholar 

  33. Blanco, N., Stafford, K.A., Lavoie, M.C., Brandenburg, A., Górna, M.W., Merski, M.: A simple model for the total number of SARS-CoV-2 infections on a national level. Epidemiol. Infect. (2021). https://doi.org/10.1017/s0950268821000649

    Article  Google Scholar 

  34. Rypdal, K., Rypdal, M.: A parsimonious description and cross-country analysis of COVID-19 epidemic curves. Int. J. Environ. Res. Public Health 17(18), 6487 (2020). https://doi.org/10.3390/ijerph17186487

    Article  Google Scholar 

Download references

Funding

No specific funding available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimiter Prodanov.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Code availability

Reference implementation in the Computer Algebra System Maxima has been developed, and the code is available through the Zenodo repository [27].

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prodanov, D. Computational aspects of the approximate analytic solutions of the SIR model: applications to modelling of COVID-19 outbreaks. Nonlinear Dyn 111, 15613–15631 (2023). https://doi.org/10.1007/s11071-023-08656-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08656-8

Keywords

Mathematics Subject Classification

Navigation