Skip to main content
Log in

Nonlinear dynamics analysis of gear system considering time-varying meshing stiffness and backlash with fractal characteristics

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The microscopic topography of tooth surface affects the nonlinear dynamic characteristics of the gear system. However, few studies have fully taken into account the effects of microscopic topography on time-varying meshing stiffness (TVMS) and backlash in gear dynamics. In this context, this study derives TVMS and time-varying backlash with fractal characteristics based on fractal theory and introduced them into a 6-DOF nonlinear dynamic model. With various nonlinear dynamics analysis tools, the dynamic characteristics of the gear system under different fractal parameters are investigated. The results indicate that the increase in the fractal dimension or the decrease in the characteristic scale coefficient leads to a smoother tooth surface, larger TVMS, and smaller amplitude of backlash. The effect of fractal dimension is more sensitive than characteristic scale coefficient. Furthermore, in the low-speed region, the increase in fractal dimension has a positive effect on the dynamic response of the system and can reduce the amplitude of dynamic transmission error. In the high-speed region, the opposite is true. It is worth pointing out that the influence of fractal dimension on gear dynamic characteristics is nonlinear. Considering the machining cost and dynamic response of gear, the fractal dimension of 1.5 is the best choice. The influence of characteristic scale coefficient on system dynamics is similar to that of fractal dimension, but the intensity is much weaker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article.

References

  1. Özgüven, H.N., Houser, D.R.: Mathematical models used in gear dynamics—a review. J. Sound Vib. 121(3), 383–411 (1988). https://doi.org/10.1016/S0022-460X(88)80365-1

    Article  Google Scholar 

  2. Korka, Z.: An overview of mathematical models used in gear dynamics. Rom. J. Acoust. Vib. 4, 43–50 (2007)

    Google Scholar 

  3. Bruzzone, F., Rosso, C.: Sources of excitation and models for cylindrical gear dynamics: a review. Machines 8(3), 37 (2020)

    Article  Google Scholar 

  4. Tuplin, W.A., Broghamer, E.L.: Gear load capacity. J. Appl. Mech. (1963). https://doi.org/10.1115/1.3636605

    Article  Google Scholar 

  5. Kahraman, A., Singh, R.: Interactions between time-varying mesh stiffness and clearance non-linearities in a geared system. J. Sound Vib. 146(1), 135–156 (1991)

    Article  Google Scholar 

  6. Wei, S., Han, Q.K., Dong, X.J., Peng, Z.K., Chu, F.L.: Dynamic response of a single-mesh gear system with periodic mesh stiffness and backlash nonlinearity under uncertainty. Nonlinear Dyn. 89, 49–60 (2017). https://doi.org/10.1007/s11071-017-3435-z

    Article  Google Scholar 

  7. Tian, G., Gao, Z., Liu, P., Bian, Y.: Dynamic modeling and stability analysis for a spur gear system considering gear backlash and bearing clearance. Machines 10, 439 (2022). https://doi.org/10.3390/machines10060439

    Article  Google Scholar 

  8. Park, C.: il: Dynamic behavior of the spur gear system with time varying stiffness by gear positions in the backlash. J. Mech. Sci. Technol. 34, 565–572 (2020). https://doi.org/10.1007/s12206-020-0104-9

    Article  Google Scholar 

  9. Xia, Y., Wan, Y., Liu, Z.: Bifurcation and chaos analysis for a spur gear pair system with friction. J. Braz. Soc. Mech. Sci. Eng. (2018). https://doi.org/10.1007/s40430-018-1443-7

    Article  Google Scholar 

  10. Kahraman, A., Singh, R.: Non-linear dynamics of a spur gear pair. J. Sound Vib. 142(1), 49–75 (1990)

    Article  Google Scholar 

  11. Comparin, R.J., Singh, R.: Non-linear frequency response characteristics of an impact pair. J. Sound Vib. (1989). https://doi.org/10.1016/0022-460X(89)90652-4

    Article  Google Scholar 

  12. Ichimaru, K., Hirano, F.: Dynamic behavior of heavy-loaded spur gears. J. Manuf. Sci. Eng. Trans. ASME. (1974). https://doi.org/10.1115/1.3438339

    Article  Google Scholar 

  13. Lu, J.W., Chen, H., Zeng, F.L., Vakakis, A.F., Bergman, L.A.: Influence of system parameters on dynamic behavior of gear pair with stochastic backlash. Meccanica 49, 429–440 (2014). https://doi.org/10.1007/s11012-013-9803-y

    Article  MathSciNet  MATH  Google Scholar 

  14. Wen, Y., Yang, J., Wang, S.: Random dynamics of a nonlinear spur gear pair in probabilistic domain. J. Sound Vib. 333, 5030–5041 (2014). https://doi.org/10.1016/j.jsv.2014.05.008

    Article  Google Scholar 

  15. Shi, J.F., Gou, X.F., Zhu, L.Y.: Calculation of time-varying backlash for an involute spur gear pair. Mech. Mach. Theory. (2020). https://doi.org/10.1016/j.mechmachtheory.2020.103956

    Article  Google Scholar 

  16. Margielewicz, J., Gąska, D., Litak, G.: Modelling of the gear backlash. Nonlinear Dyn. 97, 355–368 (2019). https://doi.org/10.1007/s11071-019-04973-z

    Article  Google Scholar 

  17. Yang, D.C.H., Lin, J.Y.: Hertzian damping, tooth friction and bending elasticity in gear impact dynamics. J. Mech. Des. Trans. ASME (1987). https://doi.org/10.1115/1.3267437

    Article  Google Scholar 

  18. Liang, X., Zuo, M.J., Pandey, M.: Analytically evaluating the influence of crack on the mesh stiffness of a planetary gear set. Mech. Mach. Theory. 76, 20–38 (2014). https://doi.org/10.1016/j.mechmachtheory.2014.02.001

    Article  Google Scholar 

  19. Luo, Y., Baddour, N., Liang, M.: A shape-independent approach to modelling gear tooth spalls for time varying mesh stiffness evaluation of a spur gear pair. Mech. Syst. Signal Process. 120, 836–852 (2019). https://doi.org/10.1016/j.ymssp.2018.11.008

    Article  Google Scholar 

  20. Chen, T., Wang, Y., Chen, Z.: A novel distribution model of multiple teeth pits for evaluating time-varying mesh stiffness of external spur gears. Mech. Syst. Signal Process. 129, 479–501 (2019). https://doi.org/10.1016/j.ymssp.2019.04.029

    Article  Google Scholar 

  21. Wang, G., Luo, Q., Zou, S.: Time-varying meshing stiffness calculation of an internal gear pair with small tooth number difference by considering the multi-tooth contact problem. J. Mech. Sci. Technol. 35, 4073–4083 (2021). https://doi.org/10.1007/s12206-021-0819-2

    Article  Google Scholar 

  22. Berry, M.V., Lewis, Z.V.: On the Weierstrass–Mandelbrot fractal function. Proc. R. Soc. Lond. A Math. Phys. Sci. (1980). https://doi.org/10.1098/rspa.1980.0044

    Article  MATH  Google Scholar 

  23. Ausloos, M., Berman, D.H.: A multivariate Weierstrass-Mandelbrot function. Proc. R. Soc. Lond. A Math. Phys. Sci. (1985). https://doi.org/10.1098/rspa.1985.0083

    Article  MATH  Google Scholar 

  24. Majumdar, A., Bhushan, B.: Role of fractal geometry in roughness characterization and contact mechanics of surfaces. J. Tribol. (1990). https://doi.org/10.1115/1.2920243

    Article  Google Scholar 

  25. Majumdar, A., Bhushan, B.: Fractal model of elastic–plastic contact between rough surfaces. J. Tribol. 113(1), 1–11 (1991)

    Article  Google Scholar 

  26. Sparrow, C., Mandelbrot, B.: The fractal geometry of nature. J. R. Stat. Soc. Ser. A. (1984). https://doi.org/10.2307/2981858

    Article  Google Scholar 

  27. Chen, Q., Ma, Y., Huang, S., Zhai, H.: Research on gears’ dynamic performance influenced by gear backlash based on fractal theory. Appl. Surf. Sci. 313, 325–332 (2014). https://doi.org/10.1016/j.apsusc.2014.05.210

    Article  Google Scholar 

  28. Chen, Q., Zhou, J., Khushnood, A., Wu, Y., Zhang, Y.: Modelling and nonlinear dynamic behavior of a geared rotor-bearing system using tooth surface microscopic features based on fractal theory. AIP Adv. (2019). https://doi.org/10.1063/1.5055907

    Article  Google Scholar 

  29. Chen, Q., Wang, Y., Tian, W., Wu, Y., Chen, Y.: An improved nonlinear dynamic model of gear pair with tooth surface microscopic features. Nonlinear Dyn. (2019). https://doi.org/10.1007/s11071-019-04874-1

    Article  Google Scholar 

  30. Li, Z., Peng, Z.: Nonlinear dynamic response of a multi-degree of freedom gear system dynamic model coupled with tooth surface characters: a case study on coal cutters. Nonlinear Dyn. 84, 271–286 (2016). https://doi.org/10.1007/s11071-015-2475-5

    Article  Google Scholar 

  31. Huang, K., Cheng, Z., Xiong, Y., Han, G., Li, L.: Bifurcation and chaos analysis of a spur gear pair system with fractal gear backlash. Chaos Solitons Fractals. (2021). https://doi.org/10.1016/j.chaos.2020.110387

    Article  MathSciNet  Google Scholar 

  32. Yu, X., Sun, Y., Li, H., Wu, S.: Nonlinear characteristics of gear pair considering fractal surface dynamic contact as internal excitation. Int. J. Non Linear Mech. (2022). https://doi.org/10.1016/j.ijnonlinmec.2022.104027

    Article  Google Scholar 

  33. Zhang, T., Liu, Z., Yang, C., Wang, Y., Liu, Q.: Study on gear contact stiffness and backlash of harmonic drive based on fractal theory. PREPRINT (Version 1) available at Research Square. (2021). https://doi.org/10.21203/rs.3.rs-652069/v1

  34. Zhao, Z., Han, H., Wang, P., Ma, H., Zhang, S., Yang, Y.: An improved model for meshing characteristics analysis of spur gears considering fractal surface contact and friction. Mech. Mach. Theory. (2021). https://doi.org/10.1016/j.mechmachtheory.2020.104219

    Article  Google Scholar 

  35. Liu, Z., Zhang, T., Zhao, Y., Bi, S.: Time-varying stiffness model of spur gear considering the effect of surface morphology characteristics. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 233, 242–253 (2019). https://doi.org/10.1177/0954408918775955

    Article  Google Scholar 

  36. Mao, H., Sun, Y., Xu, T., Yu, G.: Numerical calculation method of meshing stiffness for the beveloid gear considering the effect of surface topography. Math. Probl. Eng. (2021). https://doi.org/10.1155/2021/8886792

    Article  Google Scholar 

  37. Yang, W., Li, H., Dengqiu, M., Yongqiao, W., Jian, C.: Sliding friction contact stiffness model of involute Arc cylindrical gear based on fractal theory. Int. J. Eng. Trans. A 30, 109–119 (2017). https://doi.org/10.5829/idosi.ije.2017.30.01a.14

    Article  Google Scholar 

  38. Yan, W., Komvopoulos, K.: Contact analysis of elastic-plastic fractal surfaces. J. Appl. Phys. 84, 3617–3624 (1998). https://doi.org/10.1063/1.368536

    Article  Google Scholar 

  39. Lan, G., Sun, W., Zhang, X., Chen, Y., Tan, W., Li, X.: A three-dimensional fractal model of the normal contact characteristics of two contacting rough surfaces. AIP Adv. (2021). https://doi.org/10.1063/5.0045151

    Article  Google Scholar 

  40. Liang, A., Bian, Y., Liu, G.: A three-dimensional fractal contact model for a rough friction surface with multiple-scale asperities. (2021). https://doi.org/10.21203/rs.3.rs-527873/v1

  41. Li, G., Wang, Z.H., Zhu, W.D.: Prediction of surface wear of involute gears based on a modified fractal method. J. Tribol. (2019). https://doi.org/10.1115/1.4041587

    Article  Google Scholar 

  42. Meng, F., Xia, H., Zhang, X., Wang, J.: A new tooth pitting modeling method based on matrix equation for evaluating time-varying mesh stiffness. Eng. Fail. Anal. 142, 106799 (2022). https://doi.org/10.1016/j.engfailanal.2022.106799

    Article  Google Scholar 

  43. Gao, N., Wang, S., Bajwa, M.A.U.R.: Nonlinear dynamics of a spur gear pair with tooth root crack based on an amplitude modulation function. Eng. Comput. (Swansea Wales) 39, 1575–1596 (2022). https://doi.org/10.1108/EC-06-2020-0334

    Article  Google Scholar 

  44. Qiao W., Zhang J.: Fractal modeling of gear tooth surface profile and research on meshing stiffness of planetary gear system with high-power density. IEEE. 251–255 (2021). https://doi.org/10.1109/ICMAE52228.2021.9522420

  45. Zhao, Z., Yang, Y., Han, H., Ma, H., Wang, H., Li, Z.: Meshing characteristics of spur gears considering three-dimensional fractal rough surface under elastohydrodynamic lubrication. Mach. (Basel). 10, 705 (2022). https://doi.org/10.3390/machines10080705

    Article  Google Scholar 

  46. Wei, B., Zhao, X., Wang, L., Hu, B., Yu, L., Tang, H.: Analysis of gear surface morphology based on gray level co-occurrence matrix and fractal dimension. PLoS ONE 14, e223825 (2019). https://doi.org/10.1371/journal.pone.0223825

    Article  Google Scholar 

  47. Yu, G., Mao, H., Jiang, L., Liu, W., Valerii, T.: Fractal contact mechanics model for the rough surface of a beveloid gear with elliptical asperities. Appl. Sci. 12, 4071 (2022). https://doi.org/10.3390/app12084071

    Article  Google Scholar 

Download references

Funding

This work is supported in part by the National Natural Science Foundation of China (52175122 and 52075456), the Sichuan Science and Technology Program (2023NSFSC0362 and 2023NSFSC0371), and the Sichuan Province Innovative Talent Funding Project for Postdoctoral Fellows (BX202214).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by HX, FSM and XZ. Review and editing were performed by XZ, JXW and YLJ. The first draft of the manuscript was written by HX and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xin Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, H., Meng, F., Zhang, X. et al. Nonlinear dynamics analysis of gear system considering time-varying meshing stiffness and backlash with fractal characteristics. Nonlinear Dyn 111, 14851–14877 (2023). https://doi.org/10.1007/s11071-023-08649-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08649-7

Keywords

Navigation