Skip to main content
Log in

Dynamic response of a single-mesh gear system with periodic mesh stiffness and backlash nonlinearity under uncertainty

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Parametric uncertainties play a critical role in the response predictions of a gear system. However, accurately determining the effects of the uncertainty propagation in nonlinear time-varying models of gear systems is awkward and difficult. This paper improves the interval harmonic balance method (IHBM) to solve the dynamic problems of gear systems with backlash nonlinearity and time-varying mesh stiffness under uncertainties. To deal with the nonlinear problem including the fold points and uncertainties, the IHBM is improved by introducing the pseudo-arc length method in combination with the Chebyshev inclusion function. The proposed approach is demonstrated using a single-mesh gear system model, including the parametrically varying mesh stiffness and the gear backlash nonlinearity, excited by the transmission error. The results of the improved IHBM are compared with those obtained from the scanning method. Effects of parameter uncertainties on its dynamic behavior are also discussed in detail. From various numerical examples, it is shown that the results are consistent meanwhile the computational cost is significantly reduced. Furthermore, the proposed approach could be effectively applied for sensitivity analysis of the system response to parameter variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ozguven, H.N., Houser, D.R.: Mathematical models used in gear dynamics—a review. J. Sound Vib. 121(3), 383–411 (1988)

    Article  Google Scholar 

  2. Wang, J., Li, R., Peng, X.: Survey of nonlinear vibration of gear transmission systems. Appl. Mech. Rev. 56(3), 309–329 (2003)

    Article  Google Scholar 

  3. Pernot, S., Lamarque, C.H.: A wavelet balance method to investigate the vibrations of nonlinear dynamical systems. Nonlinear Dyn. 32(1), 33–70 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chung, K., Liu, Z.: Nonlinear analysis of chatter vibration in a cylindrical transverse grinding process with two time delays using a nonlinear time transformation method. Nonlinear Dyn. 66(4), 441–456 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Valipour, M., Banihabib, M.E., Behbahani, S.M.R.: Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J. Hydrol. 476, 433–441 (2013)

    Article  Google Scholar 

  6. Valipour, M.: Comparison of surface irrigation simulation models: full hydrodynamic, zero inertia, kinematic wave. J. Agric. Sci. 4(12), 68–74 (2012)

    Google Scholar 

  7. Valipour, M.: Comparative evaluation of radiation-based methods for estimation of potential evapotranspiration. J. Hydrol. Eng. 20(5), 04014068-1-14 (2014)

    Google Scholar 

  8. Jiang, Y., Zhu, H., Li, Z., Peng, Z.: The nonlinear dynamics response of cracked gear system in a coal cutter taking environmental multi-frequency excitation forces into consideration. Nonlinear Dyn. 84(1), 203–222 (2016)

    Article  Google Scholar 

  9. Zhu, W., Wu, S.J., Wang, X.S., Peng, Z.M.: Harmonic balance method implementation of nonlinear dynamic characteristics for compound planetary gear sets. Nonlinear Dyn. 81(3), 1511–1522 (2015)

    Article  MATH  Google Scholar 

  10. Liu, G., Parker, R.G.: Nonlinear dynamics of idler gear systems. Nonlinear Dyn. 53(4), 345–367 (2008)

    Article  MATH  Google Scholar 

  11. Tobe, T., Sato, K.: Statistical analysis of dynamic loads on spur gear teeth: experimental study. Bull JSME 20(148), 1315–1320 (1977)

    Article  Google Scholar 

  12. Tobe, T., Sato, K.: Statistical analysis of dynamic loads on spur gear teeth. Bull JSME 20(145), 882–889 (1977)

    Article  Google Scholar 

  13. Kumar, A.S., Osman, M., Sankar, T.S.: On statistical analysis of gear dynamic loads. J. Vib. Acoust. Stress Reliab. Des. 108, 362–368 (1986)

    Article  Google Scholar 

  14. Wang, Y., Zhang, W.J.: Stochastic vibration model of gear transmission systems considering speed-dependent random errors. Nonlinear Dyn. 17(2), 187–203 (1998)

    Article  MATH  Google Scholar 

  15. Naess, A., Kolnes, F.E., Mo, E.: Stochastic spur gear dynamics by numerical path integration. J. Sound Vib. 302(4–5), 936–950 (2007)

    Article  MATH  Google Scholar 

  16. Mo, E., Naess, A.: Nonsmooth dynamics by path integration: an example of stochastic and chaotic response of a meshing gear pair. J. Comput. Nonlinear Dyn. 4(3), 34501–34512 (2009)

    Article  Google Scholar 

  17. Yang, J.: Vibration analysis on multi-mesh gear-trains under combined deterministic and random excitations. Mech. Mach. Theory 59, 20–33 (2013)

    Article  Google Scholar 

  18. Bonori, G., Pellicano, F.: Non-smooth dynamics of spur gears with manufacturing errors. J. Sound Vib. 306(1–2), 271–283 (2007)

    Article  Google Scholar 

  19. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. Society for Industrial Mathematics, Philadelphia (2009)

    Book  MATH  Google Scholar 

  20. Xia, Y., Qiu, Z., Friswell, M.I.: The time response of structures with bounded parameters and interval initial conditions. J. Sound Vib. 329(3), 353–365 (2010)

    Article  Google Scholar 

  21. MV, Rama Rao, Pownuk, A., Vandewalle, S., Moens, D.: Transient response of structures with uncertain structural parameters. Struct. Saf. 32(6), 449–460 (2010)

    Article  Google Scholar 

  22. Qiu, Z., Wang, X.: Parameter perturbation method for dynamic responses of structures with uncertain-but-bounded parameters based on interval analysis. Int. J. Solids Struct. 42(18–19), 4958–4970 (2005)

    Article  MATH  Google Scholar 

  23. Ma, Y., Liang, Z., Chen, M., Hong, J.: Interval analysis of rotor dynamic response with uncertain parameters. J. Sound Vib. 332, 3869–3880 (2013)

    Article  Google Scholar 

  24. Wei, S., Zhao, J., Han, Q., Chu, F.: Dynamic response analysis on torsional vibrations of wind turbine geared transmission system with uncertainty. Renew. Energy 78, 60–67 (2015)

    Article  Google Scholar 

  25. Wei, S., Han, Q., Peng, Z., Chu, F.: Dynamic analysis of parametrically excited system under uncertainties and multi-frequency excitations. Mech. Syst. Signal Process. 72–73, 762–784 (2016)

    Article  Google Scholar 

  26. Qiu, Z., Ma, L., Wang, X.: Non-probabilistic interval analysis method for dynamic response analysis of nonlinear systems with uncertainty. J. Sound Vibr. 319(1–2), 531–540 (2009)

    Article  Google Scholar 

  27. Li, S., Kahraman, A.: Influence of dynamic behaviour on elastohydrodynamic lubrication of spur gears. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 225(8), 740–753 (2011)

    Article  Google Scholar 

  28. Cameron, T.M., Griffin, J.H.: An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems. J. Appl. Mech. 56(1), 149–154 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sarrouy, E., Sinou, J.J.: Advances in vibration analysis research. In: Non-Linear Periodic and Quasi-Periodic Vibrations in Mechanical Systems - On the use of the Harmonic Balance Methods, pp. 419–434. InTech (2011). doi:10.5772/15638

  30. Wu, J., Zhang, Y., Chen, L., Luo, Z.: A Chebyshev interval method for nonlinear dynamic systems under uncertainty. Appl. Math. Model. 37, 4578–4591 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wu, J., Luo, Z., Zhang, Y., Zhang, N., Chen, L.: Interval uncertain method for multibody mechanical systems using Chebyshev inclusion functions. Int. J. Numer. Methods Eng. 95(7), 608–630 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research work was supported by the Natural Science Foundation of China under Grant Nos. 11472170, 11632011, 51335006 and the China Postdoctoral Science Foundation under Grant No. 2016M601585.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. K. Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, S., Han, Q.K., Dong, X.J. et al. Dynamic response of a single-mesh gear system with periodic mesh stiffness and backlash nonlinearity under uncertainty. Nonlinear Dyn 89, 49–60 (2017). https://doi.org/10.1007/s11071-017-3435-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3435-z

Keywords

Navigation