Skip to main content
Log in

Finite-time integrated target tracking for spacecraft with two-dimensional turntable under performance constraints

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The finite-time integrated tracking control scheme for spacecraft with two-dimensional turntable is investigated under the performance constraints. First, an integrated attitude error model of the spacecraft platform and turntable is constructed based on the D’Alembert principle, and the expected angular acceleration is treated as a disturbance in the controller design. Next, a predefined-time observer is applied to handle external disturbance and expected angular acceleration. Furthermore, a novel performance function is designed to constrain the dynamic response process of the attitude-tracking error. Based on the performance function, the sliding surface is designed, and a finite-time tracking controller is developed, which can ensure fast convergence of tracking errors. To prevent the tracking errors breaking the performance function, the controller gain is adjusted by the performance function. At last, numerical simulation is performed to verify the feasibility and effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Schiehlen, W.: Research trends in multibody system dynamics. Multibody Syst. Dyn. 18(1), 3–13 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hollerbach, J.M.: A recursive Lagrangian formulation of maniputator dynamics and a comparative study of dynamics formulation complexity. IEEE Trans. Syst. Man Cybern. 10(11), 730–736 (1980)

    Article  Google Scholar 

  3. Ghorbani, H., Vatankhah, R., Farid, M.: General planar motion modeling and control of a smart rigid-flexible satellite considering large deflections. Nonlinear Dyn. 108(2), 911–939 (2022)

    Article  Google Scholar 

  4. Zhang, K., Wu, S., Wu, Z.: Multibody dynamics and robust attitude control of a mw-level solar power satellite. Aerosp. Sci. Technol. 111, 106575 (2021)

    Article  Google Scholar 

  5. Ashrafiuon, H., Erwin, R.S.: Sliding control approach to underactuated multibody systems. In: Proceedings of the 2004 American Control Conference, vol. 2. Boston, MA, USA, pp. 1283–1288. IEEE (2004)

  6. Tsujisawa, T., Yamashita, T.: A high performance antenna pointing control algorithm for an inter-orbit communication satellite. In: Guidance, Navigation, and Control Conference, San Diego, p. 3787. AIAA (1996)

  7. Ashrafiuon, H., Erwin, R.S.: Sliding mode control of underactuated multibody systems and its application to shape change control. Int. J. Control 81(12), 1849–1858 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, L., Hong, M., Gu, X., Ding, M., Guo, Y.: Fixed-time anti-saturation compensators based impedance control with finite-time convergence for a free-flying flexible-joint space robot. Nonlinear Dyn. 109(3), 1671–1691 (2022)

    Article  Google Scholar 

  9. Huang, P., Wang, M., Meng, Z., Zhang, F., Liu, Z.: Attitude takeover control for post-capture of target spacecraft using space robot. Aerosp. Sci. Technol. 51, 171–180 (2016)

    Article  Google Scholar 

  10. Seddaoui, A., Saaj, C.M.: Combined nonlinear \(h_\infty \) controller for a controlled-floating space robot. J. Guid. Control. Dyn. 42(8), 1878–1885 (2019)

    Article  Google Scholar 

  11. Shi, L., Yao, H., Shan, M., Gao, Q., Jin, X.: Robust control of a space robot based on an optimized adaptive variable structure control method. Aerosp. Sci. Technol. 120, 107267 (2022)

    Article  Google Scholar 

  12. Dinev, T., Merkt, W., Ivan, V., Havoutis, I., Vijayakumar, S.: Sparsity-inducing optimal control via differential dynamic programming. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 8216–8222. IEEE (2021)

  13. Merkt, W.X., Ivan, V., Dinev, T., Havoutis, I., Vijayakumar, S.: Memory clustering using persistent homology for multimodality-and discontinuity-sensitive learning of optimal control warm-starts. IEEE Trans. Robot. 37(5), 1649–1660 (2021)

    Article  Google Scholar 

  14. Li, B., Qin, K., Xiao, B., Yang, Y.: Finite-time extended state observer based fault tolerant output feedback control for attitude stabilization. ISA Trans. 91, 11–20 (2019)

    Article  Google Scholar 

  15. Cao, L., Xiao, B., Golestani, M.: Robust fixed-time attitude stabilization control of flexible spacecraft with actuator uncertainty. Nonlinear Dyn. 100(3), 2505–2519 (2020)

    Article  Google Scholar 

  16. Hu, Q., Li, B., Xiao, B., Zhang, Y.: Spacecraft attitude fault-tolerant control based on iterative learning observer and control allocation. In: Control Allocation for Spacecraft Under Actuator Faults, pp. 133–155. Springer, Singapore (2021)

  17. Ulrich, S., Hayhurst, D.L., Saenz Otero, A., Miller, D., Barkana, I.: Simple adaptive control for spacecraft proximity operations. In: AIAA Guidance, Navigation, and Control Conference, Maryland, p. 1288. AIAA (2014)

  18. Wang, J., Hu, Y., Ji, W.: Barrier function-based adaptive integral sliding mode finite-time attitude control for rigid spacecraft. Nonlinear Dyn. 110(2), 1405–1420 (2022)

    Article  Google Scholar 

  19. Xu, C., Wu, B., Cao, X., Zhang, Y.: Distributed adaptive event-triggered control for attitude synchronization of multiple spacecraft. Nonlinear Dyn. 95(4), 2625–2638 (2019)

    Article  MATH  Google Scholar 

  20. Xing, L., Zhang, J., Liu, C., Zhang, X.: Fuzzy-logic-based adaptive event-triggered sliding mode control for spacecraft attitude tracking. Aerosp. Sci. Technol. 108, 106394 (2021)

    Article  Google Scholar 

  21. Fu, J., Liu, M., Cao, X., Li, A.: Robust neural-network-based quasi-sliding-mode control for spacecraft-attitude maneuvering with prescribed performance. Aerosp. Sci. Technol. 112, 106667 (2021)

    Article  Google Scholar 

  22. Guo, Z., Wang, Z., Li, S.: Global finite-time set stabilization of spacecraft attitude with disturbances using second-order sliding mode control. Nonlinear Dyn. 108(2), 1305–1318 (2022)

    Article  Google Scholar 

  23. Zhang, Z., Guo, Y., Gong, D., Zhu, S.: Improved extended state observer-based global sliding-mode finite-time control for displacement tracking of a hydraulic roofbolter. Nonlinear Dyn. 111(12), 11191–11203 (2023)

    Article  Google Scholar 

  24. Sun, Y., Kuang, J., Gao, Y., Chen, W., Wang, J., Liu, J., Ligang, W.: Fixed-time prescribed performance tracking control for manipulators against input saturation. Nonlinear Dyn. (2023). https://doi.org/10.1007/s11071-023-08499-3

    Article  Google Scholar 

  25. Javadi, A., Chaichaowarat, R.: Position and stiffness control of an antagonistic variable stiffness actuator with input delay using super-twisting sliding mode control. Nonlinear Dyn. 111(6), 5359–5381 (2023)

    Article  Google Scholar 

  26. Tee, K.P., Ge, S.S., Tay, E.H.: Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica 45(4), 918–927 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wu, Y., Sun, H.: Attitude tracking control with constraints for rigid spacecraft based on control-barrier Lyapunov functions. IEEE Trans. Aerosp. Electron. Syst. (2021). https://doi.org/10.1109/TAES.2021.3127854

    Article  Google Scholar 

  28. Bechlioulis, C.P., Rovithakis, G.A.: Robust adaptive control of feedback linearizable mimo nonlinear systems with prescribed performance. IEEE Trans. Autom. Control 53(9), 2090–2099 (2008)

  29. Hu, Q., Shao, X., Guo, L.: Adaptive fault-tolerant attitude tracking control of spacecraft with prescribed performance. IEEE/ASME Trans. Mechatron. 23(1), 331–341 (2017)

    Article  Google Scholar 

  30. Chen, R., Wang, Z., Che, W.: Adaptive sliding mode attitude-tracking control of spacecraft with prescribed time performance. Mathematics 10(3), 401 (2022)

    Article  Google Scholar 

  31. Hao, Y., Lin, Z., Su, Z., Xiao, Y., Huang, B.: Robust adaptive control for spacecraft rendezvous with predefined-time prescribed performance and input saturation. J. Aerosp. Eng. 35(1), 06021007 (2022)

    Article  Google Scholar 

  32. Zhang, Z., Zhang, B., Yin, H.: Constraint-based adaptive robust tracking control of uncertain articulating crane guaranteeing desired dynamic control performance. Nonlinear Dyn. 111(12), 11261–11274 (2023)

    Article  Google Scholar 

  33. Bhat, S.P., Bernstein, D.S.: Lyapunov analysis of finite-time differential equations. In: Proceedings of 1995 American Control Conference-ACC’95, vol. 3, pp. 1831–1832. IEEE (1995)

  34. Seeber, R., Haimovich, H., Horn, M., Fridman, L.M., De Battista, H.: Robust exact differentiators with predefined convergence time. Automatica 134, 109858 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, L., Chai, T., Zhai, L.: Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics. IEEE Trans. Industr. Electron. 56(9), 3296–3304 (2009)

    Article  Google Scholar 

  36. Lu, K., Xia, Y.: Adaptive attitude tracking control for rigid spacecraft with finite-time convergence. Automatica 49(12), 3591–3599 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Grant No. 61973100, Grant No. 62273118, and Grant No. 12150008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanning Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Expressions for parameters

Appendix A: Expressions for parameters

\({{\varvec{J}}_{g\_o}}\) denotes the rotational inertia of the whole spacecraft relative to \(\Re _G\). \({\varvec{J}_{a\_a0}}\) denotes the rotational inertia of turntable part A around the connection point \(O_{a0}\). \({\varvec{J}_{b\_b0}}\) denotes the rotational inertia of turntable part B around the connection point \(O_{b0}\).

$$\begin{aligned} \varvec{I}_1^g= & {} \left( {{m_A} + {m_B}} \right) \cdot \left[ {{\varvec{r}}_{o\_a0}}^\mathrm{{T}}\left( {{{\varvec{r}}_{o\_a0}} + {{\varvec{T}}_{ga}}{{\varvec{\rho }}_\Sigma }} \right) \mathbf{{I}} \right. \\{} & {} \quad \left. - {{\varvec{r}}_{o\_a0}}{{\left( {{{\varvec{r}}_{o\_a0}} + {{\varvec{T}}_{ga}}{{\varvec{\rho }}_\Sigma }} \right) }^\mathrm{{T}}} \right] \\ {\varvec{I}}_1^a= & {} {m_B} \cdot {{\varvec{T}}_{ga}}\left[ {{\varvec{\rho }}_{a0\_b0}}^\mathrm{{T}}\left( {{{\varvec{\rho }}_{a0\_b0}}\mathrm{{ + }}{{\varvec{T}}_{ab}}{\varvec{l}_b}} \right) \mathbf{{I}} \right. \\{} & {} \quad \left. - {{\varvec{\rho }}_{a0\_b0}}{{\left( {{{\varvec{\rho }}_{a0\_b0}} + {{\varvec{T}}_{ab}}{\varvec{l}_b}} \right) }^\mathrm{{T}}} \right] {{\varvec{T}}_{ag}} \\ {\varvec{I}}_2^a= & {} {\left[ {{\varvec{T}}_{ga}}\left( {{m_A}{{\varvec{\rho }}_a} + {m_B}{{\varvec{\rho }}_{a0\_b0}}} \right) \right] ^\mathrm{{T}}}{{\varvec{r}}_{o\_a0}}{} \mathbf{{I}} \\{} & {} \quad - {{\varvec{T}}_{ga}}\left( {{m_A}{{\varvec{\rho }}_a} + {m_B}{{\varvec{\rho }}_{a0\_b0}}} \right) {{\varvec{r}}_{o\_a0}}^\mathrm{{T}} \\ {\varvec{I}}_1^b= & {} {\left( {{{\varvec{T}}_{ga}}{{\varvec{T}}_{ab}}{{\varvec{l}}_b}} \right) ^\mathrm{{T}}}\left( {{{\varvec{r}}_{o\_a0}} + {{\varvec{T}}_{ga}}{\varvec{\rho }_{a0\_b0}}} \right) \mathbf{{I}} \\{} & {} \quad - {{\varvec{T}}_{ga}}{{\varvec{T}}_{ab}}{{\varvec{l}}_b}{\left( {{{\varvec{r}}_{o\_a0}} + {{\varvec{T}}_{ga}}{\varvec{\rho }_{a0\_b0}}} \right) ^\mathrm{{T}}}{m_B} \\ {{\varvec{I}}_\Sigma }= & {} \left( {{m_A} + {m_B}} \right) \left[ {{\varvec{r}}_a^\mathrm{{T}}\left( {{{\varvec{T}}_{ga}}{{\varvec{\rho }}_\Sigma }} \right) \mathbf{{I}} - {{\varvec{r}}_a}{{\left( {{{\varvec{T}}_{ga}}{{\varvec{\rho }}_\Sigma }} \right) }^\mathrm{{T}}}} \right] \\ {\varvec{I}}_2^b= & {} {{\varvec{T}}_{ga}}\left[ {{{\left( {{{\varvec{T}}_{ab}}{{\varvec{l}}_b}} \right) }^\mathrm{{T}}}{\varvec{\rho }_{a0\_b0}}{} \mathbf{{I}} - {{\varvec{T}}_{ab}}{{\varvec{l}}_b}{\varvec{\rho }_{a0\_b0}}^\mathrm{{T}}{m_b}} \right] {{\varvec{T}}_{ag}} \\ {\varvec{I}}_3^g= & {} {\varvec{r}_{o\_a0}}^\mathrm{{T}}{{\varvec{T}}_{ga}}{{\varvec{T}}_{ab}}{{\varvec{l}}_b}{} \mathbf{{I}} - {\varvec{r}_{o\_a0}}{\left( {{{\varvec{T}}_{ga}}{{\varvec{T}}_{ab}}{{\varvec{l}}_b}} \right) ^\mathrm{{T}}}{m_b} \\ {\varvec{D}}_1^g= & {} \left( {{m_A} + {m_B}} \right) {{\varvec{r}}_{o\_a0}} \times \left( {{{\varvec{r}}_{o\_a0}} + {{\varvec{T}}_{ab}}{{\varvec{\rho }}_\Sigma }} \right) \\ {\varvec{D}}_1^a= & {} {m_B}\left( {{{\varvec{T}}_{ga}}{{\varvec{\rho }}_{a0\_b0}}} \right) \times \left( {{{\varvec{T}}_{ga}}{{\varvec{\rho }}_{a0\_b0}} + {{\varvec{T}}_{ga}}{{\varvec{T}}_{ab}}{\varvec{l}_b}} \right) \\ {\varvec{D}}_2^a= & {} \left( {{m_A}{{\varvec{T}}_{ga}}{{\varvec{\rho }}_a}\mathrm{{ + }}{m_B}{{\varvec{T}}_{ga}}{{\varvec{\rho }}_{a0\_b0}}} \right) \times {{\varvec{r}}_{o\_a0}} \\ {\varvec{D}}_1^b= & {} {m_B}\left( {{{\varvec{T}}_{ga}}{{\varvec{T}}_{ab}}{{\varvec{l}}_b}} \right) \times \left( {{{\varvec{r}}_{o\_a0}} + {{\varvec{T}}_{ga}}{\varvec{\rho }_{a0\_b0}}} \right) \\ {{\varvec{D}}_\Sigma }= & {} \left( {{m_A} + {m_B}} \right) {{\varvec{r}}_a} \times \left( {{{\varvec{T}}_{ga}}{{\varvec{\rho }}_\Sigma }} \right) \\ {\varvec{D}}_2^b= & {} {m_B}\left( {{{\varvec{T}}_{ga}}{{\varvec{T}}_{ab}}{{\varvec{l}}_b}} \right) \times \left( {{{\varvec{T}}_{ga}}{\varvec{\rho }_{a0\_b0}}} \right) \\ {\varvec{D}}_3^g= & {} {m_B}{\varvec{r}_{o\_a0}} \times \left( {{{\varvec{T}}_{ga}}{{\varvec{T}}_{ab}}{{\varvec{l}}_b}} \right) \\ \end{aligned}$$

\({{\varvec{\rho }}_\Sigma }\) denotes the position vector from the connection point \(O_{a0}\) to the mass center of turntable. \({\varvec{\rho }_a}\) represents the vector from the connection point \(O_{a0}\) to the mass center of the turntable part A. \({\varvec{l}_b}\) represents the vector from the connection point \(O_{b0}\) to the mass center of turntable part B. The remaining \(\varvec{r}\), \(\varvec{\rho }\), and \(\varvec{l}\) denote the vectors under the coordinate systems \(\Re _G\), \(\Re _A\), and \(\Re _B\), respectively, and their points are given by their subscripts.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Guo, Y., Lyu, Y. et al. Finite-time integrated target tracking for spacecraft with two-dimensional turntable under performance constraints. Nonlinear Dyn 111, 15075–15089 (2023). https://doi.org/10.1007/s11071-023-08645-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08645-x

Keywords

Navigation