Skip to main content
Log in

Three-dimensional nonlinear coupling vibration of drill string in deepwater riserless drilling and its influence on wellbore pressure field

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

During deepwater riserless drilling operations, the vibration behavior of drill string may have a significant impact on wellbore pressure, which leads to serious drilling accidents such as well leakage and collapse in shallow risk areas. In order to solve this problem, based on Hamilton's principle, a three-dimensional nonlinear coupling dynamics model of drill string in deepwater riserless drilling is established, taking into account the following factors: heave and offset motion of offshore platform, ocean current load, drill string-borehole contact and bit-rock interaction. The Newmark-β method is used to solve the nonlinear discrete equations of the system. The effectiveness of the model and calculation program is verified by the field test data. Meanwhile, a model of wellbore pressure field is established under the influence of axial-lateral-torsional coupling vibration of drill string. The 3D nonlinear coupling vibration characteristic of drill string and its influence on wellbore pressure fluctuation are investigated. The results indicate that the collision between the drill string system and the borehole usually occurs in the middle of the formation and at the bit, which is easy to cause drilling tools failure. The maximum pressure fluctuation along the wellbore is mainly affected by lateral vibration. The mean value of wellbore pressure fluctuation is mainly determined by torsional vibration. The results may be useful to predict the risks of well leakage and collapse in deepwater riserless drilling operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article. The processed data are available from the corresponding author upon request.

Abbreviations

\(A_{{\text{d}}}\) :

Area of the drill string facing the flow

\(B_{{{\text{px}}}}\) :

Heave load amplitude

\(B_{{{\text{py}}}}\) :

Lateral load amplitude

\(C_{{\text{D}}}\) :

Drag force coefficient

\(C_{M}\) :

Inertia force coefficient

\(c_{d}\) :

Resistance coefficient of the flow around the cylinder

\(c_{{\text{f}}}\) :

Compressibility of drilling fluid in the hole

\(c_{{\text{r}}}\) :

Friction resistance coefficient of the plate

\(D_{p}\) :

Outside diameter of drill string

\(d_{a}\) :

Inside diameter of borehole

\(d_{p}\) :

Inside diameter of drill string

\({\text{depth}}\) :

Depth of seawater

\(e\) :

Eccentric distance

\(f_{{{\text{px}}}}\) :

Heave load frequency

\(f_{{{\text{py}}}}\) :

Lateral load frequency

\(R_{{\text{b}}}\) :

Bit radius

\(T_{0}\) :

Starting torque (maximum static friction torque)

\(v_{f}\) :

Current velocity generated by tidal current and wind

\(\gamma_{\mu }\) :

Constant decay coefficient

\(\Delta S\) :

Axial deformation of drill string in formation section

\(\eta\) :

Plastic viscosity of drilling fluid

\(\mu_{a}\) :

Dynamic viscosity of drilling fluid

\(\mu_{{\text{b}}}\) :

Drill string-borehole friction coefficient

\(\mu_{{\text{c}}}\) :

Kinetic (Coulomb) coefficient

\(\mu_{{\text{s}}}\) :

Static friction coefficient

\(\rho_{a}\) :

Mass density of drilling fluid in annulus

\(\rho_{p}\) :

Mass density of drilling fluid in drill string

\(\rho_{f}\) :

Seawater mass density

\(\tau_{0}\) :

Drilling fluid yield stress

\(\Omega_{ \, 0}\) :

Drill string rotation speed at the platform

References

  1. Wang, G., Li, W., Long, Y., et al.: Technological process of the composite casing drilling technology in deep-water riserless well construction. Chem. Technol. Fuels Oils 1, 58 (2022)

    Google Scholar 

  2. Qin, R., Xu, B., Chen, H., et al.: Qualitative and quantitative analysis of the stability of conductors in riserless mud recovery system. Energies 15(7657), 7657 (2022)

    Article  Google Scholar 

  3. Wang, C., Xia, Y., Zeng, Q., et al.: Dynamic risk analysis of deepwater gas hydrate drilling with a riserless drilling system based on uncertain dynamic bayesian network model. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 8(1), 05021006 (2022)

    Article  Google Scholar 

  4. Cheng, W., Ning, F., Sun, J., et al.: A porothermoelastic wellbore stability model for riserless drilling through gas hydrate-bearing sediments in the Shenhu area of the South China Sea. J. Natl. Gas Sci. Eng. 72, 103036 (2019)

    Article  Google Scholar 

  5. Kotow, K.J., Pritchard, D.M.: Exploiting shallow formation strengths to deepen riserless casing seats. In: SPE Annual Technical Conference and Exhibition (2018)

  6. Liu, K.X., Chen, B., Ran, X.: Risks and countermeasures of deepwater shallow drilling operations. Chemical Enterprise Management, 2022(000–017)

  7. Wang, H.: Study on risk evolution mechanism of deepwater shallow drilling. China University of Petroleum (East China) (in Chinese)

  8. Inoue, T., Suzuki, H., Tar, T., et al.: Numerical simulation of motion of rotating drill pipe due to magnus effect in riserless drilling. In: ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering (2017)

  9. Liu, J., Zhao, H., Yang, S.X., et al.: Nonlinear dynamic characteristic analysis of a landing string in deepwater riserless drilling. Shock Vib. 2018(8), 1–17 (2018)

    Google Scholar 

  10. Liu, Y.H., Fan, H.H., Tian, D.Q., et al.: Stability analysis of drilling pipe and subsea wellhead for riserless drilling in deepwater. In: The 28th International Ocean and Polar Engineering Conference (2018)

  11. Fang, Y., Qian, L., He, Y., et al.: Analysis on the critical speed of drilling string in deep water without riser. J. Phys. Conf. Ser. 1549(2), 022097 (2020)

    Article  Google Scholar 

  12. Mao, B.J., Wang, E.C., Zhang, H.N., et al.: Calculation and analysis of drilling tool Stability in deepwater riserless drilling. Pet. Eng. Constr. 46(S01), 8 (2020)

    Google Scholar 

  13. Li, Y.J., Guan, S., Xu, Y.L., et al.: Three dimensional Vibration fatigue life analysis of drill string in deep-water riserless drilling. Henan Sci. Technol. 40(20), 3 (2021)

    Google Scholar 

  14. Liu, J., Chen, F.Y., Li, J., et al.: Study on three-dimentional vibration response characteristics of drilling string in deepwater riserless drilling. China Pet. Mach. 005, 050 (2022)

    Google Scholar 

  15. Ferroudji, H., Hadjadj, A., Ofei, T.N.: CFD method for analysis of the effect of drill pipe orbital motion speed and eccentricity on the velocity profiles and pressure drop of drilling fluid in laminar regime. Pet. Coal 61(5), 1241–1251 (2019)

    Google Scholar 

  16. Flayh, S.J., Sultan, H.S., Alshara, A.K.: Numerical study of drilling fluids pressure drop in wellbores with pipe rotation. In: 2nd International Conference on Sustainable Engineering Techniques (ICSET 2019) IOP Publishing (2019)

  17. Dokhani, V., Ma, Y., Li, Z., et al.: Effects of drill string eccentricity on frictional pressure losses in annuli. J. Petrol. Sci. Eng. 187, 106853 (2019)

    Article  Google Scholar 

  18. Krishna, S., Ridha, S., Vasant, P., et al.: Simplified predictive model for downhole pressure surges during tripping operations using power law drilling fluids. J. Energy Resour. Technol. Trans. ASME 142(12), 123001 (2020)

    Article  Google Scholar 

  19. Joshi, N., Khapre, A., Keshav, A., et al.: Analysis of drilling fluid flow in the annulus of drill string through computational fluid dynamics. J. Phys. Conf. Ser. 1913(1), 012128 (2021)

    Article  Google Scholar 

  20. Wang, C., Liu, J., Liu, C., et al.: Influence of platform motion to pressure fluctuation of downhole drilling fluid. China Pet. Mach. 50(5), 68–75 (2022)

    Google Scholar 

  21. Liu, H.W.: Mechanics of Materials. Higher Education Press (1982)

    Google Scholar 

  22. Lin, Z.B., Yue, C.Z., Qian, R.J.: Research on longitudinal deformation model of section for plastic analysis of space beams. In: Proceedings of the Fourth National Symposium on Modern Structural Engineering (2004) (in Chinese)

  23. Liu, J., Wang, J., Guo, X., et al.: Investigation on axial-lateral-torsion nonlinear coupling vibration model and stick-slip characteristics of drilling string in ultra-HPHT curved wells. Appl. Math. Model. 107, 182–206 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, W., Huang, G., Yu, F., et al.: Modeling and numerical study on drillstring lateral vibration for air drilling in highly-deviated wells. J. Petrol. Sci. Eng. 195, 107913 (2020)

    Article  Google Scholar 

  25. Hu, C., Wang, Y., Ling, W.: Physical essence and influence of model parameters on dynamic response of Rayleigh damping. J. Zhejiang Univ. (Eng. Sci.) 51(7), 1284–1290 (2017)

    Google Scholar 

  26. Fang, H.C.: Research on Heave compensation during rope operation in offshore drilling. Oil Field Equipment 01, 14–25 (1981)

    Google Scholar 

  27. Mao, L., Liu, Q., Zhou, S., et al.: Deep water drilling riser mechanical behavior analysis considering actual riser string configuration. J. Natl. Gas Sci. Eng. 33, 240–254 (2016)

    Article  Google Scholar 

  28. Li, S.H., Shi, Z.M., Long, S.Y., et al.: Identifcation of the hydrodynamic coefficiens in real wave-current field. China Offshore Platform 3, 6 (2010)

    Google Scholar 

  29. Yang, Y.P., Yang, J.Y.: Comparison of wave force of small-size pile calculated by Chinese, British and American specifications. Port & Waterway Eng. 12, 6 (2019)

    Google Scholar 

  30. Zhu, Y.R.: Ocean Engineering wave Mechanics. Tianjin University Press (1991). (in Chinese)

    Google Scholar 

  31. Huang, X.Q.: Hydrology. Higher Education Press (1993). (in Chinese)

    Google Scholar 

  32. Li, C.W., Fang, H.H., Wang, Z.M., et al.: Quasi-static analysis of a drilling riser under combined loads of non-uniform currents, surface waves and internal solitary waves. China Offshore Oil and Gas 27(2), 9 (2015)

    Google Scholar 

  33. Zhang, G.W.: Finite Element Analysis of Vibration Collision. Journal of Xi 'an Petroleum Institute (1996)

  34. Wu, Z.B., Huang, H., Zheng, W.X., et al.: Contact simulation analysis of horizontal well drillstring-wellbore based on automatic dynamic analysis of mechanical systems software. Sci. Technol. Eng. 20(33), 7 (2020)

    Google Scholar 

  35. Moharrami, M.J., Martins, C., Shiri, H.: Nonlinear integrated dynamic analysis of drill strings under stick-slip vibration. Appl. Ocean Res. 108(1), 102521 (2021)

    Article  Google Scholar 

  36. Sepehri, N., Sassani, F., Lawrence, P.D., et al.: Simulation and experimental studies of gear backlash and stick-slip friction in hydraulic excavator swing motion. Asme J. Dyn. Syst. Meas. Control 118(3), P99–P101 (1996)

    Article  MATH  Google Scholar 

  37. Leine, R.I., Campen, D., Kraker, A.D., et al.: Stick-slip vibrations induced by alternate friction models. Nonlinear Dyn. 16(1), 41–54 (1998)

    Article  MATH  Google Scholar 

  38. Kyllingstad, A., Nessjøen, P.J.: A New Stick-Slip Prevention System. SPE/IADC Drilling Conference and Exhibition. 119660-MS (2009).

  39. Zhang, W., Zhang, J.F.: Computer simulation of cementing dynamic process. Sci. Technol. Eng. 15, 5 (2010)

    Google Scholar 

  40. Lian, Z.H., Zheng, J.X., Zhang, Y., et al.: Research of dynamic frictional drag and deformation of running drill string in liner cementing. J. Southwest Pet. Univ. Natl. Sci. Edition 38(4), 8 (2016)

    Google Scholar 

  41. Ding, Z.R.: Hydromechanics. Higher Education Press (2003). (in Chinese)

    Google Scholar 

  42. Han, H.B., Gao, S.Q., Li, J.S., et al.: Exploring fluid resistance of disk rotor based on boundary layer theory. Mech. Sci. Technol. Aerosp. Eng. 10, 5 (2015)

    Article  Google Scholar 

Download references

Funding

This study was funded in part by the National Natural Science Foundation of China (Grant No. 51875489) and Sichuan Science and Technology Program (Grant No. 2022YFQ0034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

As shown in Fig. 2a, when the turntable rotates at speed \(\Omega_{0}\), it causes a complex three-dimensional displacement of the drill string system, including translational displacement \(\left( {u,v,w} \right)\) and torsional angle \(\phi\). In Fig. 2b, point \({\text{A}}(y,z)\) on the cross section goes to point \({\text{A}}^{\prime }\) through displacement \(\left( {v,w} \right)\), and then goes to point \({\text{B}}\) through torsional angle \(\phi\). Displacement \((\Delta y,\Delta z)\) is the change in the coordinate from \(A^{\prime }\) to \({\text{B}}\).

$$ \left\{ \begin{gathered} \Delta y = r\cos \left( {\alpha + \phi } \right) - r\cos \alpha \\ = r\left( {\cos \alpha \cos \phi - \sin \phi \sin \alpha - \cos \alpha } \right) \\ \Delta z = r\sin \left( {\alpha + \phi } \right) - r\sin \alpha \\ = r\left( {\sin \alpha \cos \phi + \sin \phi \cos \alpha - \sin \alpha } \right) \\ \end{gathered} \right. $$

The coordinates of point \({\text{A}}(y,z)\) are \(y = r\cos \alpha\), \(z = r\sin \alpha\). The above equation can be written as:

$$ \left\{ \begin{gathered} \Delta y = y\cos \phi - z\sin \phi - y \\ \Delta z = z\cos \phi + y\sin \phi - z \\ \end{gathered} \right. $$

Therefore, the total displacement \(\left( {\hat{v},\hat{w}} \right)\) of point \({\text{A}}(y,z)\) is the sum of translational displacement \(\left( {v,w} \right)\) and torsional displacement \((\Delta y,\Delta z)\).

$$ \left\{ \begin{gathered} \hat{v} = v + y\cos \phi - z\sin \phi - y \hfill \\ \hat{w} = w + z\cos \phi + y\sin \phi - z \hfill \\ \end{gathered} \right. $$

Appendix 2

Mass matrix \({\mathbf{m}}_{1}\) in Eq. (27) contains only axial interpolation function \({\varvec{N}}_{1} {\varvec{N}}_{1}^{T}\), indicating that \({\mathbf{m}}_{1}\) is a axial one-dimensional mass matrix. \({\mathbf{m}}_{2}\) contains only lateral interpolation functions \({\varvec{H}}_{1} {\varvec{H}}_{1}^{T}\) and \({\varvec{H}}_{2} {\varvec{H}}_{2}^{T}\), indicating that \({\mathbf{m}}_{2}\) is a lateral one-dimensional mass matrix. \({\mathbf{m}}_{3}\) contains only lateral interpolation function \({\varvec{N}}_{2} {\varvec{N}}_{2}^{T}\), indicating that \({\mathbf{m}}_{3}\) is a torsional one-dimensional mass matrix. Similarly, \({\varvec{k}}_{4}\), \({\varvec{k}}_{7}\) and \({\varvec{k}}_{8}\) in Eq. (28) are axial, lateral and torsional one-dimensional mass matrixes, respectively. According to the Rayleigh damping model formula in Sect. 2.2, the axial, lateral and torsional one-dimensional damping matrixes can be expressed as:

$$ \begin{aligned} {\mathbf{c}}_{A} & = \alpha_{A} {\mathbf{m}}_{1} + \beta_{A} {\varvec{k}}_{4} \\ {\mathbf{c}}_{L} & = \alpha_{L} {\mathbf{m}}_{2} + \beta_{L} {\varvec{k}}_{7} \\ {\mathbf{c}}_{T} & = \alpha_{T} {\mathbf{m}}_{3} + \beta_{T} {\varvec{k}}_{8} \\ \end{aligned} $$

where \(\alpha_{x}\) and \(\beta_{x}\) \(\left( {x = A,L,T} \right)\) are mass proportional coefficient and stiffness proportional coefficient, respectively.

Matrix \({\mathbf{m}}_{4}\) contains the lateral-torsional coupling (LTC) interpolation functions \({\varvec{N}}_{2} {\varvec{H}}_{2}^{T}\) and \({\varvec{N}}_{2} {\varvec{H}}_{1}^{T}\), and is the LTC mass matrix. \({\varvec{k}}_{5}\) contains the LTC interpolation functions \(N_{2}^{\prime } N_{2}^{\prime T} H_{1}^{\prime } H_{1}^{\prime T}\) and \(N_{2}^{\prime } N_{2}^{\prime T} H_{2}^{\prime } H_{2}^{\prime T}\). \({\varvec{k}}_{62}\) contains the LTC interpolation functions \(N_{2}^{\prime } H_{1}^{\prime } H_{2}^{\prime \prime T}\) and \(N_{2}^{\prime } H_{2}^{\prime } H_{1}^{\prime \prime T}\). They are the LTC stiffness matrixes. Therefore, following the form of the viscous damping formula, the LTC damping matrix \({\mathbf{c}}_{LT}\) can be written as follows:

$$ {\mathbf{c}}_{LT} { = }\sqrt {\alpha_{L} \alpha_{T} } \left( {{\mathbf{m}}_{4} + {\mathbf{m}}_{4}^{{\text{T}}} } \right) + \sqrt {\beta_{T} } \beta_{L} \left( {{\varvec{k}}_{62} + {\varvec{k}}_{62}^{{\text{T}}} } \right) + \beta_{T} \beta_{L} \left( {{\varvec{k}}_{5} + {\varvec{k}}_{5}^{{\text{T}}} } \right) $$

In order to facilitate calculation, the above equation is simplified as:

$$ {\mathbf{c}}_{LT} { = }\sqrt {\alpha_{L} \alpha_{T} } \left( {{\mathbf{m}}_{4} + {\mathbf{m}}_{4}^{{\text{T}}} } \right) + \sqrt {\beta_{T} } \beta_{L} \left( {{\varvec{k}}_{62} + {\varvec{k}}_{62}^{{\text{T}}} + {\varvec{k}}_{5} + {\varvec{k}}_{5}^{{\text{T}}} } \right) $$

Matrix \({\varvec{k}}_{3}\) contains the axial-lateral coupling (ALC) interpolation functions \({\varvec{N}}_{1}^{\prime } {\varvec{H}}_{1}^{\prime } {\varvec{H}}_{1}^{\prime T}\) and \({\varvec{N}}_{1}^{\prime } {\varvec{H}}_{2}^{\prime } {\varvec{H}}_{2}^{\prime T}\), and is the ALC stiffness matrix. \({\varvec{k}}_{1}\) and \({\varvec{k}}_{2}\) contain the lateral nonlinear term of higher order \({\varvec{H}}_{1}^{\prime } {\varvec{H}}_{1}^{\prime T} {\varvec{H}}_{1} ^{\prime}{\varvec{H}}_{1}^{\prime T}\), \({\varvec{H}}_{2}^{\prime } {\varvec{H}}_{2}^{\prime T} {\varvec{H}}_{2}^{\prime } {\varvec{H}}_{2}^{\prime T}\) and \({\varvec{H}}_{1}^{\prime } {\varvec{H}}_{1}^{\prime T} {\varvec{H}}_{2}^{\prime } {\varvec{H}}_{2}^{\prime T}\). In order to facilitate classification and calculation, they are directly incorporated into ALC stiffness matrixes. The ALC damping matrix \({\mathbf{c}}_{AL}\) can be written as follows:

$$ {\mathbf{c}}_{AL} = \sqrt {\beta_{A} } \beta_{L} \left( {{\varvec{k}}_{3} + {\varvec{k}}_{3}^{{\text{T}}} \user2{ + k}_{1} + {\varvec{k}}_{2} + {\varvec{k}}_{2}^{{\text{T}}} } \right) $$

Matrix \({\varvec{k}}_{61}\) contains the axial–torsional coupling (ATC) interpolation function \({\varvec{N}}_{1}^{\prime } {\varvec{N}}_{2}^{\prime } {\varvec{N}}_{2}^{\prime T}\), and is the ATC stiffness matrix. \({\varvec{k}}_{9}\) contains the torsional nonlinear term of higher order \({\varvec{N}}_{2}^{\prime } {\varvec{N}}_{2}^{\prime T} {\varvec{N}}_{2}^{\prime } {\varvec{N}}_{2}^{\prime T}\). In order to facilitate classification and calculation, they are directly incorporated into ATC stiffness matrixes. The ATC damping matrix \({\mathbf{c}}_{AT}\) can be written as follows:

$$ {\mathbf{c}}_{AT} = \sqrt {\beta_{A} } \beta_{T} \left( {{\varvec{k}}_{61} + {\varvec{k}}_{61}^{{\text{T}}} + {\varvec{k}}_{9} } \right) $$

Therefore, the 3D nonlinear coupling damping matrix of drill string element (\({\mathbf{c}}_{e}\)) can be written as:

$$ {\mathbf{c}}_{e} = {\mathbf{c}}_{A} + {\mathbf{c}}_{L} + {\mathbf{c}}_{T} + {\mathbf{c}}_{AL} + {\mathbf{c}}_{LT} + {\mathbf{c}}_{AT} $$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Liu, J. & Cai, M. Three-dimensional nonlinear coupling vibration of drill string in deepwater riserless drilling and its influence on wellbore pressure field. Nonlinear Dyn 111, 14639–14666 (2023). https://doi.org/10.1007/s11071-023-08625-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08625-1

Keywords

Navigation