Skip to main content
Log in

A nonlinear transport–diffusion model for the interactions between immune system cells and HPV-infected cells

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we present a nonlinear advection–diffusion model for the interactions of immune system cells with HPV-infected cells, where we considered the immune response from the innate system and the adaptive system. Our goal is to develop a simple, but biologically meaningful, model that allows us to investigate how the immune system interacts with HPV-infected cells via the action of natural killer cells and/or differentiated T cells. On the base of the solution, a numerical explicit scheme with respect to time is presented to approximate our proposed model. Numerical simulations show the temporal evolution of all model cells involved and point out circumstances under which it is possible to eliminate the infection in the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

Notes

  1. For better convergence results, we could use discretizations based on generalized Crank–Nicolson methods, but for our present goal it is nonessential.

  2. Proportion of the variance attributable to the factor of interest over the total variance and has a range between 0 and 1.

References

  1. González-Parra, G., Dobrovolny, H.M., Aranda, D.F., Chen-Charpentier, B., Rojas, R.A.G.: Quantifying rotavirus kinetics in the REH tumor cell line using in vitro data. Virus Res. 244, 53–63 (2018)

    Google Scholar 

  2. Jose, S.A., Raja, R., Omede, B.I., Agarwal, R.P., Alzabut, J., Cao, J., Balas, V.E.: Mathematical modeling on co-infection: transmission dynamics of Zika virus and Dengue fever. Nonlinear Dyn. 111(5), 4879–4914 (2023)

    Google Scholar 

  3. Neverova, G.P., Abakumov, A.I., Yarovenko, I.P., et al.: Mode change in the dynamics of exploited limited population with age structure. Nonlinear Dyn. 94, 827–844 (2018). https://doi.org/10.1007/s11071-018-4396-6

    Article  Google Scholar 

  4. Stephenson, E.R., Kojouharov, H.V.: A mathematical model of skeletal muscle regeneration. Math. Methods Appl. Sci. 41(18), 8589–8602 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Sun, G.Q.: Pattern formation of an epidemic model with diffusion. Nonlinear Dyn. 69, 1097–1104 (2012). https://doi.org/10.1007/s11071-012-0330-5

    Article  MathSciNet  Google Scholar 

  6. Alpar, O.: Chaotic predation scheme for age-clustered one predator-one prey Lotka-Volterra. Nonlinear Dyn. 92, 499–510 (2018). https://doi.org/10.1007/s11071-018-4071-y

    Article  Google Scholar 

  7. Awrejcewicz, J., Olejnik, P.: Analysis of dynamic systems with various friction laws. Appl. Mech. Rev. 58(6), 389–411 (2005)

    Google Scholar 

  8. Awrejcewicz, J., Andrianov, I.V., Manevitch, L.I.: Asymptotic approaches in nonlinear dynamics: new trends and applications, vol. 69. Springer, Berlin (2012)

    MATH  Google Scholar 

  9. Bhaskaran, S., Nair, A.S.: Mathematical modelling of nonlinear dynamics generated from modular interconnections in cellular SOS response system. Nonlinear Dyn. 93, 643–652 (2018). https://doi.org/10.1007/s11071-018-4215-0

    Article  Google Scholar 

  10. De Pillis, L.G., Radunskaya, A.: A mathematical tumor model with immune resistance and drug therapy: an optimal control approach. Comput. Math. Methods Med. 3(2), 79–100 (2001)

    MATH  Google Scholar 

  11. de Pillis, L.G., Radunskaya, A.: A mathematical model of immune response to tumor invasion. Comput. Fluid Solid Mech. 2003, 1661–1668 (2003)

    Google Scholar 

  12. Jerez, S., Pliego, E., Solis, F.J.: Oscillatory behavior in discrete slow power-law models. Nonlinear Dyn. 102, 1553–1566 (2020). https://doi.org/10.1007/s11071-020-05982-z

    Article  Google Scholar 

  13. Mineeja, K.K., Ignatius, R.P.: Spatiotemporal activities of a pulse-coupled biological neural network. Nonlinear Dyn. 92, 1881–1897 (2018). https://doi.org/10.1007/s11071-018-4169-2

    Article  Google Scholar 

  14. Saeed, U., Ali, I., Din, Q.: Neimark–Sacker bifurcation and chaos control in discrete-time predator-prey model with parasites. Nonlinear Dyn. 94, 2527–2536 (2018). https://doi.org/10.1007/s11071-018-4507-4

    Article  MATH  Google Scholar 

  15. Van Scoy, G.K., George, E.L., Asantewaa, F.O., Kerns, L., Saunders, M.M., Prieto-Langarica, A.: A cellular automata model of bone formation. Math. Biosci. 286, 58–64 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Yang, Q., Yang, T.: Complex dynamics in a generalized Langford system. Nonlinear Dyn. 91, 2241–2270 (2018). https://doi.org/10.1007/s11071-017-4012-1

    Article  MATH  Google Scholar 

  17. Solis, F., Gonzalez, L.M.: A model for HVP infected cells at different lesion discrete stages. Int. J. Complex Syst. Sci. 2(1), 7–10 (2012)

    Google Scholar 

  18. Solis, F.J., Gonzalez, L.M.: Modelling the effects of human papillomavirus in cervical cells. Int. J. Comput. Math. 91(2), 179–187 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Jerez, S., Gonzalez, L.M., Solis, F.J.: A regular perturbation analytical-numerical method for the evolution of precancerous lesions caused by the human papillomavirus. Numer. Methods Partial Differ. Equ. 31(3), 847–855 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Solis, F.J., Gonzalez, L.M.: A numerical approach for a model of the precancer lesions caused by the human papillomavirus. J. Differ. Equ. Appl. 23(6), 1093–1104 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Solis, F.J., Gonzalez, L.M.: Analytical and numerical modeling of the evolution of human papillomavirus infected cells. Appl. Math. Comput. 324, 28–35 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Zhang, R.F., Li, M.C., Yin, H.M.: Rogue wave solutions and the bright and dark solitons of the (3+1)-dimensional Jimbo–Miwa equation. Nonlinear Dyn. 103, 1071–1079 (2021). https://doi.org/10.1007/s11071-020-06112-5

    Article  Google Scholar 

  23. Zhang, R.F., Li, M.C., Gan, J.Y., Li, Q., Lan, Z.Z.: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos, Solitons & Fractals 154, 111692 (2022). https://doi.org/10.1016/j.chaos.2021.111692

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, R.F., Li, M.C., Albishari, M., Zheng, F.C., Lan, Z.Z.: Generalized lump solutions, classical lump solutions and rogue waves of the (2+ 1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada-like equation. Appl. Math. Comput. 403, 126201 (2021). https://doi.org/10.1016/j.amc.2021.126201

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, R.F., Li, M.C., Cherraf, A., Vadyala, S.R.: The interference wave and the bright and dark soliton for two integro-differential equation by using BNNM. Nonlin. Dyn. 111(9), 8637–8646 (2023)

    Google Scholar 

  26. Wazwaz, A.M.: New (3+1)-dimensional Painlevé integrable fifth-order equation with third-order temporal dispersion. Nonlinear Dyn. 106, 891–897 (2021). https://doi.org/10.1007/s11071-021-06872-8

    Article  Google Scholar 

  27. Wazwaz, A.M.: Painlevé integrability and lump solutions for two extended (3 + 1)- and (2 + 1)-dimensional Kadomtsev–Petviashvili equations. Nonlinear Dyn. 111, 3623–3632 (2023). https://doi.org/10.1007/s11071-022-08074-2

    Article  Google Scholar 

  28. Liu, J.G., Zhu, W.H.: Various exact analytical solutions of a variable-coefficient Kadomtsev–Petviashvili equation. Nonlinear Dyn. 100, 2739–2751 (2020)

    Google Scholar 

  29. Ma, W.X., Yong, X.L., Zhang, H.Q.: Diversity of interaction solutions to the (2+1)-dimensional Ito equation. Comput. Math. Appl. 75, 289–295 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Wazwaz, A.M.: Two new integrable fourth-order nonlinear equations: multiple soliton solutions and multiple complex soliton solutions. Nonlinear Dyn. 94, 2655–2663 (2018)

    Google Scholar 

  31. Kaur, L., Wazwaz, A.M.: Optical soliton solutions of variable coefficient Biswas–Milovic (BM) model comprising Kerr law and damping effect. Optik 266, 169617 (2022). https://doi.org/10.1016/j.ijleo.2022.169617

    Article  Google Scholar 

  32. Liu, J.G.: Lump-type solutions and interaction solutions for the (2+1)-dimensional asymmetrical Nizhnik–Novikov–Veselov equation. Eur. Phys. J. Plus 134, 56 (2019)

    Google Scholar 

  33. Wazwaz, A.M., Albalawi, W., El-Tantawy, S.A.: Optical envelope soliton solutions for coupled nonlinear Schrödinger equations applicable to high birefringence fibers. Optik 255, 168673 (2022). https://doi.org/10.1016/j.ijleo.2022.168673

    Article  Google Scholar 

  34. Zhang, R.F., Li, M.C.: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear Dyn. 108, 521–531 (2022). https://doi.org/10.1007/s11071-022-07207-x

    Article  Google Scholar 

  35. Zhang, R.F., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 95, 3041–3048 (2019). https://doi.org/10.1007/s11071-018-04739-z

    Article  MATH  Google Scholar 

  36. Zhang, R.F., Bilige, S., Liu, J.G., Li, M.: Bright-dark solitons and interaction phenomenon for p-gBKP equation by using bilinear neural network method. Physica Scripta 96(2), 025224 (2020). https://doi.org/10.1016/j.ijleo.2022.168673

    Article  Google Scholar 

  37. Dehghan, M., Saadatmandi, A.: Chebyshev finite difference method for Fredholm integro-differential equation. Int. J. Comput. Math. 85(1), 123–130 (2008)

    MathSciNet  MATH  Google Scholar 

  38. Maleknejad, K., Mahmoudi, Y.: Taylor polynomial solution of high-order nonlinear Volterra–Fredholm integro-differential equations. Appl. Math. Comput. 145(2–3), 641–653 (2003)

    MathSciNet  MATH  Google Scholar 

  39. Lakestani, M., Razzaghi, M., Dehghan, M.: Semiorthogonal spline wavelets approximation for Fredholm integro-differential equations. Math. Probl. Eng. (2003). https://doi.org/10.1155/MPE/2006/96184

    Article  MATH  Google Scholar 

  40. Prakash, C.: Application of the locally analytic differencing scheme to some test problems for the convection-diffusion equation. Numer. Heat Transf. 7(2), 165–182 (1984)

    MATH  Google Scholar 

  41. Senba, M., Mori, N.: Mechanisms of virus immune evasion lead to development from chronic inflammation to cancer formation associated with human papillomavirus infection. Oncol. Rev. 6(2), e17 (2012)

    Google Scholar 

  42. Zhou, C., Tuong, Z.K., Frazer, I.H.: Papillomavirus immune evasion strategies target the infected cell and the local immune system. Front. Oncol. 9, 682 (2019)

    Google Scholar 

  43. Herfs, M., Yamamoto, Y., Laury, A., Wang, X., Nucci, M.R., McLaughlin-Drubin, M.E., Münger, K., Feldman, S., McKeon, F.D., Xian, W., Crum, C.P.: A discrete population of squamocolumnar junction cells implicated in the pathogenesis of cervical cancer. Proc. Natl. Acad. Sci. 109(26), 10516–10521 (2012)

    Google Scholar 

  44. Jochmus-Kudielka, I., Schneider, A., Braun, R., Kimmig, R., Koldovsky, U., Schneweis, K.E., Seedorf, K., Gissmann, L.: Antibodies against the human papillomavirus type 16 early proteins in human sera: correlation of anti-E7 reactivity with cervical cancer. JNCI: J. Natl. Cancer Inst. 81(22), 1698–1704 (1989)

    Google Scholar 

  45. del Toro-Arreola, S., García-Chagollán, M., Jave-Suárez, L.F.: Mecanismos de escape a la respuesta inmune innata en cáncer cervicouterino asociado a VPH. Revista Médica del Instituto Mexicano del Seguro Social 53(S2), 194–199 (2015)

    Google Scholar 

  46. Amador-Molina, A., Hernández-Valencia, J.F., Lamoyi, E., Contreras-Paredes, A., Lizano, M.: Role of innate immunity against human papillomavirus (HPV) infections and effect of adjuvants in promoting specific immune response. Viruses 5(11), 2624–2642 (2013)

    Google Scholar 

  47. Diefenbach, A., Jensen, E.R., Jamieson, A.M., Raulet, D.H.: Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413(6852), 165–171 (2001)

    Google Scholar 

  48. Stanley, M.: Immune responses to human papillomavirus. Vaccine 24, S16–S22 (2006)

    Google Scholar 

  49. Ladyzhenskaya, O.A., Ural’tseva, N.N.: A boundary-value problem for linear and quasi-linear parabolic equations. Doklady Akademii Nauk 139(3), 544–547 (1961)

    MathSciNet  Google Scholar 

  50. Jerez, S.: Non-standard Lagrange–Burman methods for the numerical integration of differential equations. J. Differ. Equ. Appl. 18(11), 1899–1912 (2012)

    MathSciNet  MATH  Google Scholar 

  51. Lopez-Marcos, J.C.: A difference scheme for a nonlinear partial integrodifferential equation. SIAM J. Numer. Anal. 27(1), 20–31 (1990)

    MathSciNet  MATH  Google Scholar 

  52. Akimenko, V., Adi-Kusumo, F.: Age-structured delayed SIPCV epidemic model of HPV and cervical cancer cells dynamics I. Numer. Method. Biomath. 10(2), 2110027 (2021)

    MathSciNet  MATH  Google Scholar 

  53. Allali, K.: Stability analysis and optimal control of HPV infection model with early-stage cervical cancer. Biosystems 199, 104321 (2021)

    Google Scholar 

  54. Alsaleh, A.A., Gumel, A.B.: Analysis of risk-structured vaccination model for the dynamics of oncogenic and warts-causing HPV types. Bull. Math. Biol. 76, 1670–1726 (2014)

    MathSciNet  MATH  Google Scholar 

  55. Asih, T.S.N., Lenhart, S., Wise, S., Aryati, L., Adi-Kusumo, F., Hardianti, M.S., Forde, J.: The dynamics of HPV infection and cervical cancer cells. Bull. Math. Biol. 78, 4–20 (2016)

    MathSciNet  MATH  Google Scholar 

  56. Brouwer, A.F., Meza, R., Eisenberg, M.C.: Transmission heterogeneity and autoinoculation in a multisite infection model of HPV. Math. Biosci. 270, 115–125 (2015)

    MathSciNet  MATH  Google Scholar 

  57. Elbasha, E.H.: Global stability of equilibria in a two-sex HPV vaccination model. Bull. Math. Biol. 70, 894–909 (2008)

    MathSciNet  MATH  Google Scholar 

  58. Elbasha, E.H., Dasbach, E.J., Insinga, R.P.: A multi-type HPV transmission model. Bull. Math. Biol. 70, 2126–2176 (2008)

    MathSciNet  MATH  Google Scholar 

  59. Fraser, C., Tomassini, J.E., Xi, L., Golm, G., Watson, M., Giuliano, A.R., Barr, E., Ault, K.A.: Modeling the long-term antibody response of a human papillomavirus (HPV) virus-like particle (VLP) type 16 prophylactic vaccine. Vaccine 25(21), 4324–4333 (2007)

    Google Scholar 

  60. Giaretta, A., Toffolo, G.M.: Modeling hpv late promoter regulation. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2386-2389 IEEE. (2018). https://doi.org/10.1109/EMBC.2018.8512817

  61. Gurmu, E.D., Koya, P.R.: Sensitivity analysis and modeling the impact of screening on the transmission dynamics of human papilloma virus (HPV). Am. J. Appl. Math. 7(3), 70–79 (2019)

    Google Scholar 

  62. Gurmu, E.D., Koya, P.R.: Impact of chemotherapy treatment of SITR compartmentalization and modeling of human papilloma virus (HPV). IOSR J. Math. 15(3), 17–29 (2019)

    Google Scholar 

  63. Gurmu, E.D., Bole, B.K., Koya, P.R.: Mathematical model for co-infection of HPV with cervical cancer and HIV with AIDS diseases. Int. J. Sci. Res. Math. Stat. 7(2), 107–121 (2020)

    Google Scholar 

  64. Lee, S., Tameru, A.: A mathematical model of human papillomavirus (HPV) in the United States and its impact on cervical cancer. J. Cancer 3, 262–268 (2012). https://doi.org/10.7150/jca.4161

    Article  Google Scholar 

  65. Al-arydah, M., Smith, R.: An age-structured model of human papillomavirus vaccination. Math. Comput. Simul. 82(4), 629–652 (2011)

    MathSciNet  MATH  Google Scholar 

  66. Nwajeri, U.K., Omame, A., Onyenegecha, C.P.: Analysis of a fractional order model for HPV and CT co-infection. Results Phys. 28, 104643 (2021). https://doi.org/10.1016/j.rinp.2021.104643

    Article  Google Scholar 

  67. Nwajeri, U.K., Panle, A.B., Omame, A., Obi, M.C., Onyenegecha, C.P.: On the fractional order model for HPV and Syphilis using non-singular kernel. Results Phys. 37, 105463 (2022). https://doi.org/10.1016/j.rinp.2022.105463

    Article  Google Scholar 

  68. Omame, A., Umana, R.A., Okuonghae, D., Inyama, S.C.: Mathematical analysis of a two-sex Human Papillomavirus (HPV) model. Int. J. Biomath. 11(07), 1850092 (2018). https://doi.org/10.1142/S1793524518500924

    Article  MathSciNet  MATH  Google Scholar 

  69. Omame, A., Okuonghae, D., Nwafor, U.E., Odionyenma, B.U.: A co-infection model for HPV and syphilis with optimal control and cost-effectiveness analysis. Int. J. Biomath. 14(07), 2150050 (2021). https://doi.org/10.1142/S1793524521500509

    Article  MathSciNet  MATH  Google Scholar 

  70. Sado, A.E.: Mathematical modeling of cervical cancer with HPV transmission and vaccination. Am. J. Appl. Math. 7(2), 21–25 (2019). https://doi.org/10.11648/j.sjams.20190702.13

    Article  Google Scholar 

  71. Tan, N., Sharma, M., Winer, R., Galloway, D., Rees, H., Barnabas, R.V.: Model-estimated effectiveness of single dose 9-valent HPV vaccination for HIV-positive and HIV-negative females in South Africa. Vaccine 36(32), 4830–4836 (2018)

    Google Scholar 

  72. Vänskä, S., Auranen, K., Leino, T., Salo, H., Nieminen, P., Kilpi, T., Tiihonen, P., Apter, D., Lehtinen, M.: Impact of vaccination on 14 high-risk HPV type infections: a mathematical modelling approach. PloS one 8(8), e72088 (2013). https://doi.org/10.1371/journal.pone.0072088

    Article  Google Scholar 

  73. De Sanjose, S., Quint, W.G., Alemany, L., Geraets, D.T., Klaustermeier, J.E., Lloveras, B., Tous, S., Felix, A., Bravo, L.E., Shin, H., Vallejos, C., Alonso de Ruiz, P., Lima, M.A., Guimera, N., Clavero, O., Alejo, M., Llombart-Bosch, A., Cheng-Yang, C., Tatti, S.A., Kasamatsu, E., Bosch, F.X.: Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol. 11(11), 1048–1056 (2010)

    Google Scholar 

  74. Alizon, S., Murall, C.L., Bravo, I.G.: Why human papillomavirus acute infections matter. Viruses 9(10), 293 (2017). https://doi.org/10.3390/v9100293

    Article  Google Scholar 

  75. Bruni, L., Diaz, M., Castellsagué, M., Ferrer, E., Bosch, F.X., de Sanjosé, S.: Cervical human papillomavirus prevalence in 5 continents: meta-analysis of 1 million women with normal cytological findings. J. Infect. Dis. 202(12), 1789–1799 (2010)

    Google Scholar 

  76. Di Donato, V., Bellati, F., Fischetti, M., Plotti, F., Perniola, G., Panici, P.B.: Vaginal cancer. Crit. Rev. Oncol. Hematol. 81(3), 286–295 (2012)

    Google Scholar 

  77. Grce, M., Mravak-Stipetić, M.: Human papillomavirus-associated diseases. Clin. Dermatol. 32(2), 253–258 (2014)

    Google Scholar 

  78. Liebrich, C., Brummer, O., Von Wasielewski, R., Wegener, G., Meijer, C.J.L.M., Iftner, T., Petry, K.U.: Primary cervical cancer truly negative for high-risk human papillomavirus is a rare but distinct entity that can affect virgins and young adolescents. Eur. J. Gynaecol. Oncol. 30(1), 45–48 (2009)

    Google Scholar 

  79. Bernard, H.U., Calleja-Macias, I.E., Dunn, S.T.: Genome variation of hu- man papillomavirus types: phylogenetic and medical implications. Int. J. Cancer 118(5), 1071–1076 (2006)

    Google Scholar 

  80. Schiller, J.T., Day, P.M., Kines, R.C.: Current understanding of the mechanism of HPV infection. Gynecol. Oncol. 118(1), S12–S17 (2010)

    Google Scholar 

  81. Broniarczyk, J., Massimi, P., Bergant, M., Banks, L.: Human papillomavirus infectious entry and trafficking is a rapid process. J. Virol. 89(17), 8727–8732 (2015)

    Google Scholar 

  82. Stanley, M.: Pathology and epidemiology of HPV infection in females. Gynecol. Oncol. 117(2), S5–S10 (2010)

    Google Scholar 

  83. Zhang, Y., Wang, N., Ding, M., Yang, Y., Wang, Z., Huang, L., Zhu, W., Mellor, A., Hou, X., Zhou, C., Yan, R., Wang, W., Wu, S.: CD40 accelerates the antigen-specific stem-like memory CD8+ T Cells formation and Human Papilloma Virus (HPV)-positive tumor eradication. Front. Immunol. 11, 1012 (2020). https://doi.org/10.3389/fimmu.2020.01012

    Article  Google Scholar 

  84. Sasagawa, T., Takagi, H., Makinoda, S.: Immune responses against human papillomavirus (HPV) infection and evasion of host defense in cervical cancer. J. Infect. Chemother. 18(6), 807–815 (2012)

    Google Scholar 

  85. Ryser, M.D., Myers, E.R., Durrett, R.: HPV clearance and the neglected role of stochasticity. PLoS Comput. Biol. 11(3), e1004 (2015). https://doi.org/10.1371/journal.pcbi.1004113

    Article  Google Scholar 

  86. Garcia-Iglesias, T., del Toro-Arreola, A., Albarran-Somoza, B., del Toro-Arreola, S., Sanchez-Hernandez, P.E., Ramirez-Duen̄as, M.G., Balderas-Pen̄a, L.M.A., Bravo-Cuellar, A., Ortiz-Lazareno, P., Daneri-Navarro, A.: Low NKp30, NKp46 and NKG2D expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer 9, 1–8 (2009). https://doi.org/10.1186/1471-2407-9-186

  87. Wierzbicka, M., Józefiak, A., Szydłowski, J., Marszałek, A., Stankiewicz, C., Hassman-Poznańska, E., Osuch-Wójcikiewicz, E., Składzień, J., Klatka, J., Pietruszewska, W., Puacz, E., Szyfter, K., Szyfter, W.: Recommendations for the diagnosis of human papilloma virus (HPV) high and low risk in the prevention and treatment of diseases of the oral cavity, pharynx and larynx. Guide of experts PTORL and KIDL. Otolaryngol. Polska 67(3), 113–134 (2013)

    Google Scholar 

  88. Hibma, M.H.: Suppl 2: the immune response to papillomavirus during infection persistence and regression. Open Virol J. 6, 241 (2012). https://doi.org/10.2174/1874357901206010241

    Article  Google Scholar 

  89. Karaki, S., Blanc, C., Tran, T., Galy-Fauroux, I., Mougel, A., Dransart, E., Anson, M., Tanchot, C., Paolini, L., Gruel, N., Gibault, L., Lepimpec-Barhes, F., Fabbre, E., Benhamouda, N., Badoual, C., Damotte, D., Donnadieu, E., Kobold, S., Mami-Chouaib, F., Golub, R., Johannes, L., Tartour, E.: CXCR6 deficiency impairs cancer vaccine efficacy and CD8+ resident memory T-cell recruitment in head and neck and lung tumors. J. Immunother. Cancer. (2021). https://doi.org/10.1136/jitc-2020-001948

    Article  Google Scholar 

  90. Bohórquez Pérez, R.A.: Factores asociados a la prevalencia de infección por VPH de alto riesgo en mujeres de la comuna norte de Bucaramanga. https://repositorio.udes.edu.co/entities/publication/bde5717f-be2e-4c01-a71a-31040b4c7710/full (2018). Accessed 22 June 2022

  91. Lisco, A., Hsu, A.P., Dimitrova, D., Proctor, D.M., Mace, E.M., Ye, P., Andreso, M.V., Hicks, S., Grivas, C., Hammoud, D.A., Manion, M., Starret, G., Farrel, A., Dobbs, K., Brownell, I., Buck, C., Notarangelo, L., Orange, J.S., Leonard, W.J., Orestes, M.I., Peters, A., Kanakry, J.A., Segre, J.A., Kong, H., Sereti, I.: Treatment of relapsing HPV diseases by restored function of natural killer cells. New England J. Med. 385(10), 921–929 (2021)

    Google Scholar 

  92. Van den Bergh, J.M., Guerti, K., Willemen, Y., Lion, E., Cools, N., Goossens, H., Vorsters, A., Van Tendeloo, V.F.I., Anguille, S., Van Damme, P., Smits, E.L.: HPV vaccine stimulates cytotoxic activity of killer dendritic cells and natural killer cells against HPV positive tumour cells. J. Cell. Mol. Med. 18(7), 1372–1380 (2014)

    Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Solis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solis, F.J., Gonzalez, L.M. A nonlinear transport–diffusion model for the interactions between immune system cells and HPV-infected cells. Nonlinear Dyn 111, 15557–15571 (2023). https://doi.org/10.1007/s11071-023-08616-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08616-2

Keywords

Mathematics Subject Classification

Navigation