Skip to main content
Log in

Generation of anomalously scattered lumps via lump chains degeneration within the Mel’nikov equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper explores two distinct approaches for degenerating lump chains into anomalously scattered lumps within the Mel’nikov equation. The first approach involves directly degenerating lump chains with specific phase parameters by simultaneously modulating their periods. The second approach entails equalizing the parameters of distinct lump chains to obtain a degenerate lump chain, followed by adjusting its period to infinity to achieve anomalously scattered lumps. We also calculate the asymptotic form of the degenerate lump chains at large time and establishes the relationship between peak locations of the anomalously scattered lumps and certain polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement Statement

Data sharing does not apply to this article as no data sets were generated or analyzed during the current study.

References

  1. Ablowitz, M.J., Segur, H.: Solitons and the inverse scattering transform. SIAM (1981)

  2. Abramyan, L., Stepanyants, Y.: The structure of two-dimensional solitons in media with anomalously small dispersion. Sov. Phys. JETP 88, 1616–1621 (1985)

    Google Scholar 

  3. Pelinovsky, D.E., Stepanyants, Y.A., Kivshar, Y.S.: Self-focusing of plane dark solitons in nonlinear defocusing media. Phys. Rev. E 55, 5016–5026 (1995)

    MathSciNet  Google Scholar 

  4. Mironov, V.A., Smirnov, A.I., Smirnov, L.A.: Structure of vortex shedding past potential barriers moving in a Bose–Einstein condensate. J. Exp. Theor. Phys. 110, 877–889 (2010)

    Google Scholar 

  5. Petviashvili, V.I.: Equation of an extraordinary soliton. Soviet J. Plasma Phys. 2, 257–260 (1976)

    Google Scholar 

  6. Manakov, S.V., Zakhorov, V.E., Bordag, L.A., Its, A.R., Matveev, V.B.: Two-dimensional solitons of the Kadomtsev–Petviashvili equation and their interaction. Phys. Lett. A 63, 205–206 (1977)

    Google Scholar 

  7. Gorshkov, K.A., Pelinovsky, D.E., Stepanyants, Y.A.: Normal and anomalous scattering, formation and decay of bound states of two-dimensional solitons described by the Kadomtsev-Petviashvili equation. JETP 104, 2704–2720 (1993)

    Google Scholar 

  8. Pelinovskii, D.E., Stepanyants, Y.A.: New multisoliton solutions of the Kadomtsev–Petviashvili equation. JETP Lett. 57, 24–28 (1993)

    Google Scholar 

  9. Lester, C., Gelash, A., Zakharov, D., Zakharov, V.: Lump chains in the KP-I equation. Stud. Appl. Math. 147, 1425–1442 (2021)

    MathSciNet  MATH  Google Scholar 

  10. Ma, W.X., Zhou, Y.: Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J. Differ. Equ. 264, 2633–2659 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Wazwaz, A.M.: Integrable (3+1)-dimensional Ito equation: variety of lump solutions and multiple-soliton solutions. Nonlinear Dyn. 109, 1929–1934 (2022)

    Google Scholar 

  12. Satsuma, J., Ablowitz, M.J.: Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 20, 1496–1503 (1979)

    MathSciNet  MATH  Google Scholar 

  13. Yang, X., Fan, R., Li, B.: Soliton molecules and some novel interaction solutions to the (2+1)-dimensional B-type Kadomtsev–Petviashvili equation. Phys. Scr. 95, 045213 (2020)

    Google Scholar 

  14. Yang, X., Zhang, Z., Li, W., Li, B.: Breathers, lumps and hybrid solutions of the (2+1)-dimensional Hirota–Satsuma–Ito equation. Rocky Mountain J. Math. 50(1), 319–335 (2020)

    MathSciNet  MATH  Google Scholar 

  15. Wang, X., Wang, L., Liu, C., Guo, B., Wei, J.: Rogue waves, semirational rogue waves and W-shaped solitons in the three-level coupled Maxwell–Bloch equations. Commun. Nonlinear Sci. Numer. Simul. 107, 106172 (2022)

    MathSciNet  MATH  Google Scholar 

  16. Wang, X., Wei, J.: Three types of Darboux transformation and general soliton solutions for the space-shifted nonlocal PT symmetric nonlinear Schrödinger equation. Appl. Math. Lett. 130, 107998 (2022)

    MATH  Google Scholar 

  17. Zhang, R., Li, M., Gan, J., Li, Q., Lan, Z.: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos Solitons Fractals 154, 111692 (2022)

    MathSciNet  MATH  Google Scholar 

  18. Zhang, R., Li, M., Albishari, M., Zheng, F., Lan, Z.: Generalized lump solutions, classical lump solutions and rogue waves of the (2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada-like equation. Appl. Math. Compt. 403, 126201 (2021)

    MathSciNet  MATH  Google Scholar 

  19. Zhang, R., Li, M., Cherraf, A., Vadyala, S.R.: The interference wave and the bright and dark soliton for two integro-differential equation by using BNNM. Nonlinear Dyn. 111, 8637–8646 (2023)

    Google Scholar 

  20. Wazwaz, A.M.: Painlevé integrability and lump solutions for two extended (3 + 1)- and (2 + 1)-dimensional Kadomtsev–Petviashvili equations. Nonlinear Dyn. 111, 3623–3632 (2023)

    Google Scholar 

  21. Wazwaz, A.M.: New (3+1) -dimensional Painlevé integrable fifth-order equation with third-order temporal dispersion. Nonlinear Dyn. 106, 891–897 (2021)

    Google Scholar 

  22. Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Second-order nonlinear Schrödinger equation breather solutions in the degenerate and rogue wave limits. Phys. Rev. E 85, 066601 (2012)

    Google Scholar 

  23. Gelash, A.A., Zakharov, V.E.: Superregular solitonic solutions: a novel scenario for the nonlinear stage of modulation instability. Nonlinearity 27(4), R1 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Li, S., Biondini, G.: Soliton interactions and degenerate soliton complexes for the focusing nonlinear Schrödinger equation with nonzero background. Eur. Phys. J. Plus 133, 400 (2018)

    Google Scholar 

  25. Wang, L., He, J., Xu, H., Wang, J., Porsezian, K.: Generation of higher-order rogue waves from multibreathers by double degeneracy in an optical fiber. Phys. Rev. E 95, 042217 (2017)

    MathSciNet  Google Scholar 

  26. Zhang, Z., Li, B., Chen, J., Guo, Q., Stepanyants, Y.: Degenerate lump interactions within the Kadomtsev–Petviashvili equation. Commun. Nonlinear Sci. Numer. Simul. 112, 106555 (2022)

    MathSciNet  MATH  Google Scholar 

  27. Yang, X., Zhang, Z., Wang, Z.: Degenerate lump wave solutions of the Mel’nikov equation. Nonlinear Dyn. 111, 1553–1563 (2023)

    Google Scholar 

  28. Zhang, Z., Yang, X., Li, B., Guo, Q., Stepanyants, Y.: Multi-lump formations from lump chains and plane solitons in the KP1 equation. Nonlinear Dyn. 111, 1625–1642 (2023)

    Google Scholar 

  29. Han, G., Li, X., Zhao, Q., Li, C.: Interaction structures of multi localized waves within the Kadomtsev–Petviashvili I equation. Physica D 446, 133671 (2023)

    MathSciNet  MATH  Google Scholar 

  30. Zhang, Z., Guo, Q., Stepanyants, Y.: Creation of weakly interacting lumps by degeneration of lump chains in the KP1 equation. Chaos Solitons Fractals 170, 113398 (2023)

    MathSciNet  Google Scholar 

  31. Mel’nikov, V.K.: On equations for wave interactions. Lett. Math. Phys. 7, 129–136 (1983)

    MathSciNet  MATH  Google Scholar 

  32. Zakharov, V., Kuznetsov, E.: Multi-scale expansions in the theory of systems integrable by the inverse scattering transform. Physica D 18, 455–463 (1986)

    MathSciNet  MATH  Google Scholar 

  33. Mel’nikov, V.K.: Wave emission and absorption in a nonlinear integrable system. Phys. Lett. A 118, 22–24 (1986)

    MathSciNet  Google Scholar 

  34. Mel’nikov, V.K.: Reflection of waves in nonlinear integrable systems. J. Math. Phys. 28, 2603–2609 (1987)

    MathSciNet  MATH  Google Scholar 

  35. Mel’nikov, V.K.: A direct method for deriving a multi-soliton solution for the problem of interaction of waves on the \(x, y\) plane. Commun. Math. Phys. 112, 639–652 (1987)

    MATH  Google Scholar 

  36. Hase, Y., Hirota, R., Ohta, Y., Satsuma, J.: Soliton solutions to the Mel’nikov equations. J. Phys. Soc. Jpn. 58, 2713–2720 (1989)

    Google Scholar 

  37. Senthil Kumar, C., Radha, R., Lakshmanan, M.: Exponentially localized solutions of Mel’nikov equation. Chaos Solitons Fractals 22, 705–712 (2004)

    MathSciNet  MATH  Google Scholar 

  38. Mu, G., Qin, Z.: Two spatial dimensional N-rogue waves and their dynamics in Mel’nikov equation. Nonlinear Anal. Real World Appl. 18, 1–13 (2014)

    MathSciNet  MATH  Google Scholar 

  39. Zhang, X., Xu, T., Chen, Y.: Hybrid solutions to Mel’nikov system. Nonlinear Dyn. 94, 2841–2862 (2018)

    Google Scholar 

  40. Sun, B., Wazwaz, A.M.: Interaction of lumps and dark solitons in the Mel’nikov equation. Nonlinear Dyn. 92, 2049–2059 (2018)

    MATH  Google Scholar 

  41. Rao, J., Malomed, B.A., Cheng, Y., He, J.: Dynamics of interaction between lumps and solitons in the Mel’nikov equation. Commun. Nonlinear Sci. Numer. Simul. 91, 105429 (2020)

    MathSciNet  MATH  Google Scholar 

  42. Xu, Y., Mihalache, D., He, J.: Resonant collisions among two-dimensional localized waves in the Mel’nikov equation. Nonlinear Dyn. 106, 2431–2448 (2021)

    Google Scholar 

  43. Yang, X., Zhang, Z., Wazwaz, A.M., Wang, Z.: A direct method for generating rogue wave solutions to the (3+1)-dimensional Korteweg-de Vries Benjamin–Bona–Mahony equation. Phys. Lett. A 449, 128355 (2022)

    MathSciNet  MATH  Google Scholar 

  44. Yang, B., Yang, J.: Pattern transformation in higher-order lumps of the Kadomtsev–Petviashvili I equation. J. Nonlinear Sci. 32, 52 (2022)

    MathSciNet  MATH  Google Scholar 

  45. Xu, G., Gelash, A., Chabchoub, A., Zakharov, V., Kibler, B.: Breather wave molecules. Phys. Rev. Lett. 122, 084101 (2019)

    Google Scholar 

  46. Li, C., He, J., Porsezian, K.: Rogue waves of the Hirota and the Maxwell-Bloch equations. Phys. Rev. E 87, 012913 (2013)

  47. Yang, X., Zhang, Z., Li, B.: Soliton molecules and dynamics of the smooth positon for the Gerdjikov–Ivanov equation. Chin. Phys. B 29, 100501 (2020)

    Google Scholar 

  48. Zhang, R., Li, M.: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear Dyn. 108, 521–531 (2022)

    Google Scholar 

  49. Zhang, R., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 95, 3041–3048 (2019)

    MATH  Google Scholar 

Download references

Acknowledgements

This project is supported by the National Natural Science Foundation of China (Grant Nos. 52171251, U21062251), LiaoNing Revitalization Talents Program (XLYC1907014) and the Fundamental Research Funds for the Central Universities (DUT21ZD205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Wang.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The auxiliary functions of three anomalously scattered lumps in Sect. 3.1 are

$$\begin{aligned}{} & {} f_{6a} = {X}^{12}+ \left( 6\,{y}^{2}+36 \right) {X}^{10}+600\,{X}^{9}t\\{} & {} \quad + \left( 15\,{y}^{4}+180\,{y}^{2}+270 \right) {X}^{8}+5040\,{X}^{7}t\\{} & {} \quad + \left( 20 \,{y}^{6}+360\,{y}^{4}+54000\,{t}^{2} \right. \\{} & {} \quad \left. +1440\,{y}^{2}+990 \right) {X}^{6 }-3600\,t \\{} & {} \quad \left( {y}^{4}{-}{\frac{57\,{y}^{2}}{5}}{-}{\frac{39}{10}} \right) {X}^{5}{+} \left( 15\,{y}^{8}{+}360\,{y}^{6}{+}2700\,{y}^{4}\right. \\{} & {} \quad \left. + \left( 810000\,{t}^{2}+4050 \right) {y}^{2} -918000\,{t}^{2}-6075 \right) {X}^{4} \\{} & {} \quad -10800000\,t \left( {\frac{{y}^{6}}{2250}}+{\frac{7 \,{y}^{4}}{3000}}+{t}^{2}+{\frac{3\,{y}^{2}}{1000}}\right. \\{} & {} \quad \left. +{\frac{19}{2000}} \right) {X}^{3}+ \left( 6\,{y}^{10}+180\,{y}^{8}+2160\,{y}^{6} \right. \\{} & {} \quad \left. + \left( -270000\,{t}^{2}+9450 \right) {y}^{4}\right. \\{} & {} \quad \left. + \left( 1620000\,{t}^{2} +28350 \right) {y}^{2}+7970400\,{t}^{2}+60750 \right) {X}^{2}\\{} & {} \quad +32400000 \, \left( -{\frac{{y}^{8}}{18000}} \right. \\{} & {} \quad \left. -{\frac{17\,{y}^{6}}{9000}}-{ \frac{47\,{y}^{4}}{6000}}+ \left( {t}^{2}-{\frac{1}{2000}} \right) {y }^{2}+{\frac{16\,{t}^{2}}{5}}+{\frac{11}{500}} \right) tX\\{} & {} \quad +{y}^{12}+36 \,{y}^{10}+630\,{y}^{8}+ \left( 126000\,{t}^{2}+6390 \right) {y}^{6}\\{} & {} \quad + \left( 2538000\,{t}^{2}+34425 \right) {y}^{4}+ \left( 11858400\,{t}^{ 2}+93150 \right) {y}^{2}\\{} & {} \quad +324000000\,{t}^{4}+9266400\,{t}^{2}+50625, \\{} & {} g_{6a}= {X}^{12}+{y}^{12}+24\,i{y}^{11}+12\,{X}^{10}+600\,{X}^{9}t\\{} & {} \quad + \left( 6\, {X}^{2}-228 \right) {y}^{10}+ \left( 120\,i{X}^{2}-960\,i \right) {y}^ {9}+270\,{X}^{8} \\{} & {} +5040\,{X}^{7}t + \left( 15\,{X}^{4}-900\,{X}^{2}-1800 \,Xt+630 \right) {y}^{8}\\{} & {} \quad + \left( 240\,i{X}^{4}-2880\,i{X}^{2}-28800\,i Xt-8640\,i \right) {y}^{7}+ \left( 54000\,{t}^{2} \right. \\{} & {} \quad \left. -4770 \right) {X}^{6} -322920\,{X}^{5}t+ \left( 20\,{X}^{6}-1320\,{X}^{4}-4800\,{X}^{3}t\right. \\{} & {} \quad \left. + 2160\,{X}^{2}+140400\,Xt+126000\,{t}^{2}+22230 \right) {y}^{6} \\{} & {} \quad + \left( 240\,i{X}^{6}-2880\,i{X}^{4}-57600\,i{X}^{3}t-12960\,i{X}^{2}\right. \\{} & {} \quad \left. + 129600\,iXt+1512000\,i{t}^{2}-24840\,i \right) {y}^{5}+ \left( - 4158000\,{t}^{2}\right. \\{} & {} \quad \left. -43875 \right) {X}^{4}+ \left( 15\,{X}^{8}-840\,{X}^{6 }-3600\,{X}^{5}t\right. \\{} & {} \quad \left. +2700\,{X}^{4}+262800\,{X}^{3}t+ \left( -270000\,{t}^{ 2}+52650 \right) {X}^{2} \right. \\{} & {} \quad \left. +826200\,Xt-5022000\,{t}^{2}+147825 \right) {y }^{4}+324000000\,{t}^{4}\\{} & {} \quad + \left( -10800000\,{t}^{3}-1182600\,t \right) {X}^{3}+ \left( 120\,i{X}^{8}-960\,i{X}^{6} \right. \\{} & {} \quad \left. -28800\,i{X}^{5}t+374400\,i{X}^{3}t+ \left( -2160000\,i{t}^{2}+97200\,i \right) {X}^{2}\right. \\{} & {} \quad \left. + 2116800\,iXt-1296000\,i{t}^{2}+91800\,i \right) {y}^{3}+ \left( - 11469600\,{t}^{2} \right. \\{} & {} \quad \left. -52650 \right) {X}^{2}+ \left( 6\,{X}^{10}-180\,{X}^{ 8}+1440\,{X}^{6}+127440\,{X}^{5}t\right. \\{} & {} \quad \left. + \left( 810000\,{t}^{2}+25650 \right) {X}^{4}+572400\,{X}^{3}t \right. \\{} & {} \quad \left. + \left( 8100000\,{t}^{2} -68850 \right) {X}^{2}-10173600\,{t}^{2}\right. \\{} & {} \quad \left. + \left( 32400000\,{t}^{3}-664200\,t \right) X+174150 \right) {y}^{2}+5896800\,{t}^{2} \\{} & {} \quad - \left( 25920000\, {t}^{3}+518400\,t \right) X+ \left( 24\,i{X}^{10}+4320\,i{X}^{6}\right. \\{} & {} \quad \left. + 336960\,i{X}^{5}t+ \left( 3240000\,i{t}^{2}+70200\,i \right) {X}^{4} \right. \\{} & {} \quad \left. +1944000\,i{X}^{3}t + \left( 19440000\,i{t}^{2}+16200\,i \right) {X}^{2}\right. \\{} & {} \quad \left. +129600000\,i \left( {t}^{2}+{\frac{23}{2000}} \right) Xt-9590400\,i{t }^{2}+178200\,i \right) y \\{} & {} \quad -30375, \end{aligned}$$

where \(X=x-7t\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Wang, Z. & Zhang, Z. Generation of anomalously scattered lumps via lump chains degeneration within the Mel’nikov equation. Nonlinear Dyn 111, 15293–15307 (2023). https://doi.org/10.1007/s11071-023-08615-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08615-3

Keywords

Navigation