Skip to main content
Log in

Optimal nutation suppressing method for detumbling satellites via a flexible deceleration device

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Malfunctioning satellites are normally in tumbling state due to residual angular momentum, rendering direct capture impossible. Therefore, detumbling these objects is an indispensable phase for on-orbit safe capture. A novel detumbling method, using a flexible device (e.g., brush or rod) to approach and compliantly contact the target objects, has been proposed to successfully avoid the major drawback of potential risky collisions. Although efficient, the flexible-device-based method suffers from two limitations: (i) Due to complex three-axis rotary motion, it is extremely difficult to predetermine the contact position on the target satellite so as to ensure simultaneous suppression of rotation and nutation. (ii) The conventional finite-element-based dynamic model of the large-deformation device is high-dimensional, causing unacceptable computing time for the on-orbit task. To address these problems, this paper proposes an optimal nutation suppressing method to ensure the most efficient suppression of nutation during detumbling. In addition, a highly efficient data-driven model is proposed to accurately describe the large-deformation flexible device for real-time on-orbit computation. Finally, numerical simulations are carried out to verify the feasibility and efficiency of the present method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Forshaw, J.L., Aglietti, G.S., Fellowes, S., Salmon, T., Retat, I., Hall, A., et al.: The active space debris removal mission RemoveDebris. part 1: from concept to launch. Acta Astronautica. 168, 293–309 (2020). https://doi.org/10.1016/j.actaastro.2019.09.002

    Article  Google Scholar 

  2. European Space Agency.: ESA’s Space Environment Report (2022). https://www.esa.int/Safety_Security/Space_Debris/ESA_s_Space_Environment_Report_2022

  3. Georg, K., Michael, S., Peiyuan, W., Franz, K., Jiri, S., Thomas, S., et al.: Determination of attitude and attitude motion of space debris using laser ranging and single-photon light curve data. In: Flohrer, T., Schmitz, F., (eds.) 7th European Conference on Space Debris. Darmstadt, Germany: ESA Space Debris Office; Available from: https://conference.sdo.esoc.esa.int/proceedings/sdc7/paper/696 (2017)

  4. Huang, W., He, D., Li, Y., Zhang, D., Zou, H., Liu, H., et al.: Nonlinear dynamic modeling of a tether-net system for space debris capture. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-07718-7

    Article  Google Scholar 

  5. Aglietti, G.S., Taylor, B., Fellowes, S., Salmon, T., Retat, I., Hall, A., et al.: The active space debris removal mission RemoveDebris. Part 2: in orbit operations. Acta Astronautica. 168, 310–322 (2020). https://doi.org/10.1016/j.actaastro.2019.09.001

    Article  Google Scholar 

  6. Flores-Abad, A., Ma, O., Pham, K., Ulrich, S.: A review of space robotics technologies for on-orbit servicing. Progress Aerosp. Sci. 68, 1–26 (2014). https://doi.org/10.1016/j.paerosci.2014.03.002

    Article  Google Scholar 

  7. Chen, G., Wang, Y., Wang, Y., Liang, J., Zhang, L., Pan, G.: Detumbling strategy based on friction control of dual-arm space robot for capturing tumbling target. Chin. J. Aeronaut. 33(3), 1093–1106 (2020). https://doi.org/10.1016/j.cja.2019.04.019

    Article  Google Scholar 

  8. Abrishami, A., Gong, S.: Optimized control allocation of an articulated overactuated solar sail. J. Guid. Control Dyn. 43(12), 2321–2332 (2020). https://doi.org/10.2514/1.G005227

    Article  Google Scholar 

  9. Papushev, P., Karavaev, Y., Mishina, M.: Investigations of the evolution of optical characteristics and dynamics of proper rotation of uncontrolled geostationary artificial satellites. Adv. Space Res. 43(9), 1416–1422 (2009). https://doi.org/10.1016/j.asr.2009.02.007

    Article  Google Scholar 

  10. Gómez, N.O., Walker, S.J.I.: Earth’s gravity gradient and eddy currents effects on the rotational dynamics of space debris objects: Envisat case study. Adv. Space Res. 56(3), 494–508 (2015). https://doi.org/10.1016/j.asr.2014.12.031

    Article  Google Scholar 

  11. Šilha, J., Pittet, J.N., Hamara, M., Schildknecht, T.: Apparent rotation properties of space debris extracted from photometric measurements. Adv. Space Res. 61(3), 844–861 (2018). https://doi.org/10.1016/j.asr.2017.10.048

    Article  Google Scholar 

  12. Liu, Y., Liu, X., Cai, G., Xu, F., Tang, S.: Detumbling a non-cooperative tumbling target using a low-thrust device. AIAA J. 60(5), 2718–2729 (2022). https://doi.org/10.2514/1.J060982

    Article  Google Scholar 

  13. Aslanov, V., Ledkov, A.: Detumbling of axisymmetric space debris during transportation by ion beam shepherd in 3D case. Adv. Space Res. 69(1), 570–580 (2022). https://doi.org/10.1016/j.asr.2021.10.002

    Article  Google Scholar 

  14. Shan, M., Guo, J., Gill, E.: Review and comparison of active space debris capturing and removal methods. Progress Aerosp. Sci. 80, 18–32 (2016). https://doi.org/10.1016/j.paerosci.2015.11.001

    Article  Google Scholar 

  15. Nakajima, Y., Mitani, S., Tani, H., Murakami, N., Yamamoto, T., Yamanaka, K.: Detumbling space debris via thruster plume impingement. In: AIAA/AAS Astrodynamics Specialist Conference. Long Beach, California: American Institute of Aeronautics and Astronautics; (2016)

  16. Nakajima, Y., Tani, H., Yamamoto, T., Murakami, N., Mitani, S., Yamanaka, K.: Contactless space debris detumbling: a database approach based on computational fluid dynamics. J. Guid. Control Dyn. 41(9), 1906–1918 (2018). https://doi.org/10.2514/1.G003451

    Article  Google Scholar 

  17. Dai, H., Zhao, H., Yue, X.: Plasma detumbling of failed spacecraft by using hall effect thrusters. J. Guid. Control Dyn. 45(12), 2389–2397 (2022)

    Article  Google Scholar 

  18. Ortiz Gómez, N., Walker, S.J.I.: Eddy currents applied to de-tumbling of space debris: analysis and validation of approximate proposed methods. Acta Astronautica. 114, 34–53 (2015). https://doi.org/10.1016/j.actaastro.2015.04.012

    Article  Google Scholar 

  19. Gómez, N.O., Walker, S.J.I.: Guidance, navigation, and control for the eddy brake method. J. Guid. Control Dyn. 40(1), 52–68 (2016). https://doi.org/10.2514/1.G002081

    Article  Google Scholar 

  20. Li, M., Zhang, Y., Zhang, J., Lin, H., Yang, F.: Detumbling method for uncontrolled satellite based on eddy currents. J. Guid. Control Dyn. 43(8), 1444–1455 (2020). https://doi.org/10.2514/1.G004234

    Article  Google Scholar 

  21. Wang, X., Zhou, Z., Chen, Y., Chen, S.: Optimal contact control for space debris detumbling and nutation damping. Adv. Space Res. 66(4), 951–962 (2020). https://doi.org/10.1016/j.asr.2020.04.043

    Article  Google Scholar 

  22. Hovell, K., Ulrich, S.: Attitude stabilization of an uncooperative spacecraft in an orbital environment using visco-elastic tethers. In: AIAA Guidance, Navigation, and Control Conference. San Diego, California, USA; Available from: (2016) https://arc.aiaa.org/doi/abs/10.2514/6.2016-0641

  23. Lim, J., Chung, J.: Dynamic analysis of a tethered satellite system for space debris capture. Nonlinear Dyn. 94(4), 2391–2408 (2018). https://doi.org/10.1007/s11071-018-4498-1

    Article  Google Scholar 

  24. Nishida, S.I., Kawamoto, S.: Strategy for capturing of a tumbling space debris. Acta Astronautica. 68(1), 113–120 (2011). https://doi.org/10.1016/j.actaastro.2010.06.045

    Article  Google Scholar 

  25. Liu, Y.Q., Yu, Z.W., Liu, X.F., Cai, G.P.: Active detumbling technology for high dynamic non-cooperative space targets. Multibody Syst. Dyn. 47(1), 21–41 (2019). https://doi.org/10.1007/s11044-019-09675-3

    Article  MathSciNet  MATH  Google Scholar 

  26. Ma, Z., Liu, Z., Zou, H., Liu, J.: Dynamic modeling and analysis of satellite detumbling using a brush type contactor based on flexible multibody dynamics. Mech. Mach. Theory. 170, 104675 (2022). https://doi.org/10.1016/j.mechmachtheory.2021.104675

  27. Dai, H., Chen, H., Yue, X.: Dynamic analysis of detumbling a rotating satellite using flexible deceleration rod. Nonlinear Dyn. 108(4), 3331–3345 (2022). https://doi.org/10.1007/s11071-022-07414-6

    Article  Google Scholar 

  28. Mutyalarao, M., Bharathi, D., Rao, B.N.: Large deflections of a cantilever beam under an inclined end load. Appl. Math. Comput. 217(7), 3607–3613 (2010). https://doi.org/10.1016/j.amc.2010.09.021

    Article  MathSciNet  MATH  Google Scholar 

  29. Shvartsman, B.S.: Large deflections of a cantilever beam subjected to a follower force. J. Sound Vibr. 304(3), 969–973 (2007). https://doi.org/10.1016/j.jsv.2007.03.010

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No.12072270 and No.U2013206) and National Key Research and Development Program of China (No.2021YFA0717100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Chen or Honghua Dai.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Dai, H. & Yue, X. Optimal nutation suppressing method for detumbling satellites via a flexible deceleration device. Nonlinear Dyn 111, 14977–14989 (2023). https://doi.org/10.1007/s11071-023-08611-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08611-7

Keywords

Navigation