Skip to main content
Log in

Dynamical behavior of flexible net spacecraft for landing on asteroid

  • Research Article
  • Published:
Astrodynamics Aims and scope Submit manuscript

A Correction to this article was published on 11 February 2022

This article has been updated

Abstract

A new era of up-close asteroid exploration has been entered in the 21st century. However, the widely rugged terrain and microgravity field of asteroids still pose significant challenges to the stable landing of spacecraft and may even directly lead to the escape of the explorer. Owing to the substantial energy dissipation arising from the interaction among multiple bodies, the flexible net, which is a typical multibody system, may be capable of overcoming the above problems. In this study, a dynamical model was established to analyze the movement of the flexible net spacecraft (FNS) near and on the asteroid comprehensively. First, we investigated the dynamical environment of the target asteroid by combining the polyhedron method and spherical harmonics parametric surface modeling approach. Thereafter, we constructed the multibody dynamics model of the explorer using the linear Kelvin–Voigt method. Subsequently, we studied the collision process between the FNS and asteroid based on the spring–damper contact dynamics model. The trajectory and speed of the FNS could be derived by solving the system dynamic equations in parallel. Finally, we analyzed the deformation, descent, jumping motion, and surface movement process of the FNS during the movement. Consequently, a promising scheme is provided for asteroid exploration missions in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Bottke, W. F., Cellino, A., Paolicchi, P., Binzel, R. P. Asteroids III. Tucson: Univ. Arizona Press, 2001: 3–15.

    Google Scholar 

  2. Castillo-Rogez, J. C., Pavone, M., Nesnas, I. A. D., Hoffman, J. A. Expected science return of spatially-extended in-situ exploration at small solar system bodies. In: Proceedings of the IEEE Aerospace Conference, 2012: 1–15.

  3. Anthony, N., Emami, M. R. Asteroid engineering: The state-of-the-art of Near-Earth Asteroids science and technology. Progress in Aerospace Sciences, 2018, 100(6): 1–17.

    Article  Google Scholar 

  4. Feng, J., Hou, X., Armellin, R. Survey on studies about model uncertainties in small body explorations. Progress in Aerospace Sciences, 2019, 110(10): 1–12.

    Google Scholar 

  5. Normile, D. Asteroid mission faces ‘breathtaking’ touchdown. Science, 2019, 363(6422): 16–17.

    Article  Google Scholar 

  6. Yoshimitsu, T., Kubota, T., Nakatani, I. M. INERVA rover which became a small artificial solar satellite. In: Proceedings of the 20th Annual AIAA/USU Conference on Small Satellites, 2006: SSC06-IV-4

  7. Michel, P., O’Brien, D. P., Abe, S., Hirata, N. Itokawa’s cratering record as observed by Hayabusa: Implications for its age and collisional history. Icarus, 2009, 200(2): 503–513.

    Article  Google Scholar 

  8. Lowry, S. C., Weissman, P. R., Hicks, M. D., Whiteley, R. J., Larson, S. Physical properties of Asteroid (25143) Itokawa—Target of the Hayabusa sample return mission. Icarus, 2005, 176(2): 408–417.

    Article  Google Scholar 

  9. Abe, S., Mukai, T., Hirata, N., Barnouin-Jha, O. S., Cheng, A. F., Demura, H., Gaskell, R. W., Hashimoto, T., Hiraoka, K., Honda, T. et al. Mass and local topography measurements of Itokawa by Hayabusa. Science, 2006, 312(5778): 1344–1347.

    Article  Google Scholar 

  10. Lederer S. M., Domingue, D. L., Vilas, F., Abe, M., Farnham, T. L., Jarvis, K. S., Lowry, S. C., Ohba, Y., Weissman, P. R., French, L. M. Physical characteristics of Hayabusa target Asteroid 25143 Itokawa. Icarus, 2005, 173(1): 153–165.

    Article  Google Scholar 

  11. Kawaguchi, J., Fujiwara, A., Uesugi, T. Hayabusa—Its technology and science accomplishment summary and hayabusa-2. Acta Astronautica, 2008, 62(10–11): 639–647.

    Article  Google Scholar 

  12. Fujiwara, A., Kawaguchi, J., Yeomans, D. K., Abe, M., Mukai, T., Saito, J., Yano, H., Yoshikawa, M., Scheeres, D. J., Barmouin-Jha, O. et al. The rubble-pile asteroid Itokawa as observed by Hayabusa. Science, 2006, 312(5778): 1330–1344.

    Article  Google Scholar 

  13. Taylor, M. G. G. T., Altobelli, N., Buratti, B. J., Choukroun, M. The Rosetta mission orbiter science overview: The comet phase. Philosophical Transactions, 2017, 375(2097): 20160262.

    Google Scholar 

  14. Ulamec, S., Biele, J., Blazquez, A., Cozzoni, B., Delmas, C., Fantinati, C., Gaudon, P., Geurts, K., Jurado, E., Kuchemann, O. et al. Rosetta Lande—Philae: Landing preparations. Acta Astronautica, 2015, 107: 79–86.

    Article  Google Scholar 

  15. Jurado, E., Martin, T., Canalias, E., Blazquez, A., Garmier, R., Ceolin, T., Gaudon, P., Delmas, C., Biele, J., Ulamec, S. et al. Rosetta lander Philae: Flight dynamics analyses for landing site selection and post-landing operations. Acta Astronautica, 2016, 125: 65–79.

    Article  Google Scholar 

  16. Baranyai, T., Várkonyi, P. L., Balázs, A. Rotational motion of the spacecraft Philae during landing on comet 67P/churyumov-gerasimenko. Journal of Spacecraft and Rockets, 2017, 54(3): 554–565.

    Article  Google Scholar 

  17. Schroder S. E., Mottola, S., Arnold, G., Grothues, H.-G., Jaumann, R., Keller, H. U., Michaelis, H., Bibring, J.-P., Pelivan, I., Koncz, A. et al. Close-up images of the final Philae landing site on comet 67P/Churyumov-Gerasimenko acquired by the ROLIS camera. Icarus, 2017, 285: 263–274.

    Article  Google Scholar 

  18. Watanabe, S., Hirabayashi, M., Hirata, N., Noguchi, R., Shimaki, Y., Ikeda, H., Tatsumi, E., Yoshikawa, M., Kikuchi, S., Yabuta, H. et al. Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—A spinning top-shaped rubble pile. Science, 2019, 364(6437): 268–272.

    Article  Google Scholar 

  19. Ogawa, N., Terui, F., Mimasu, Y., Yoshikawa, K., Ono, G., Yasuda, S., Matsushima, K., Masuda, T., Hihara, H., Sano, J. et al. Image-based autonomous navigation of Hayabusa2 using artificial landmarks: The design and brief in-flight results of the first landing on asteroid Ryugu. Astrodynamics, 2020, 4(2): 89–103.

    Article  Google Scholar 

  20. Tsuda, Y., Takeuchi, H., Ogawa, N., Ono, G., Kikuchi, S., Oki, Y., Ishiguro, M., Kuroda, D., Urakawa, S., Okumura, S. I. et al. Rendezvous to asteroid with highly uncertain ephemeris: Hayabusa2’s Ryugu-approach operation result. Astrodynamics, 2020, 4(2): 137–147.

    Article  Google Scholar 

  21. Morota, T., Sugita, S., Cho, Y., Kanamaru, M., Tatsumi, E., Sakatani, N., Honda, R., Hirata, N., Kikuchi, H., Yamada, M. et al. Sample collection from asteroid (162173) Ryugu by Hayabusa2: Implications for surface evolution. Science, 2020, 368(6491): 654–659.

    Article  Google Scholar 

  22. Sugita, S., Honda, R., Morota, T., Kameda, S., Sawada, H., Tatsumi, E., Yamada, M., Honda, C., Yokota, Y., Kouyama, T. et al. The geomorphology, color, and thermal properties of Ryugu: Implications for parent-body processes. Science, 2019, 364(6437): 252.

    Article  Google Scholar 

  23. Takao, Y., Mimasu, Y., Tsuda, Y. Simultaneous estimation of spacecraft position and asteroid diameter during final approach of Hayabusa2 to Ryugu. Astrodynamics, 2020, 4(2): 163–175.

    Article  Google Scholar 

  24. Yoshikawa, K., Sawada, H., Kikuchi, S., Ogawa, N., Mimasu, Y., Ono, G., Takei, Y., Terui, F., Saiki, T., Yasuda, S., et al. Modeling and analysis of Hayabusa2 touchdown. Astrodynamics, 2020, 4(2): 119–135.

    Article  Google Scholar 

  25. Arakawa, M., Saiki, T., Wada, K., Ogawa, K., Kadono, T., Shirai, K., Sawada, H., Ishibashi, K., Honda, R., Sakatani, N. et al. An artificial impact on the asteroid (162173) Ryugu formed a crater in the gravity-dominated regime. Science, 2020, 368(6486): 67–71.

    Article  Google Scholar 

  26. Scheeres, D. J., McMahon, J. W., French, A. S., Brack, D. N., Chesley, S. R., Farnocchia, D., Takahashi, Y., Leonard, J. M., Geeraert, J., Page, B. et al. The dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements. Nature Astronomy, 2019, 3(4): 352–361.

    Article  Google Scholar 

  27. Hamilton, V. E., Simon, A. A., Christensen, P. R., Reuter, B. E., Clark, M. A., Barucci, N. E., Bowles, W. V., Boynton, J. R., Cloutis, E. A. Connolly, K. L. Jr. et al. Evidence for widespread hydrated minerals on asteroid (101955) Bennu. Nature Astronomy, 2019, 3(4): 332–340.

    Article  Google Scholar 

  28. Hergenrother, C. W., Maleszewski, C. K., Nolan, M. C., Li, J.-Y., Droue d’Aubigny, C. Y., Shelly, F. C., Howell, E. S., Kareta, T. R., Izawa, M. R. M., Barucci, M. A. et al. The operational environment and rotational acceleration of asteroid (101955) Bennu from OSIRIS-REx observations. Nature Communications, 2019, 10(1): 1291.

    Article  Google Scholar 

  29. Dellagiustina, D. N., Emery, J. P., Golish, D. R., Rozitis, B., Bennett, C. A., Bueke, K. N., Ballouz, R.-L., Becker, K. J., Christensen, P. R. Drouet d’Aubigny, C. Y. et al. Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis. Nature Astronomy, 2019, 3(4): 341–351.

    Article  Google Scholar 

  30. Lauretta, D. S., Bartels, A. E., Barucci, M. A., Bierhaus, E. B., Binzel, R. P., Bottke, W. F., Campins, H., Chesley, S. R., Clark, B. C., Clark, B. E. et al. The OSIRIS-REx target asteroid (101955) Bennu: Constraints on its physical, geological, and dynamical nature from astronomical observations. Meteoritics & Planetary Science, 2014, 50(4): 834–849.

    Article  Google Scholar 

  31. Lauretta, D. S., Dellagiustina, D. N., Bennett, C. A., Golish, D. R., Becker, K. J., Balram-Knutson, S. S., Barnouin, O. S., Becker, T. L., Bottke, W. F., Boynton, W. V. et al. The unexpected surface of asteroid (101955) Bennu. Nature, 2019, 568(7750): 55–60.

    Article  Google Scholar 

  32. Lauretta, D. S., Hergenrother, C. W., Chesley, S. R., Leonard, J. M., Pelgrift, J. Y., Adam, C. D., Al Asad, M., Antreasian, P. G., Ballouz, R. L., Becker, K. J. et al. Episodes of particle ejection from the surface of the active asteroid (101955) Bennu. Science, 2019, 366(6470): eaay3544.

    Article  Google Scholar 

  33. Shan, M., Guo, J., Gill, E. Contact dynamic models of space debris capturing using a net. Acta Astronautica, 2019, 158: 198–205.

    Article  Google Scholar 

  34. Zhao, Y., Huang, P., Zhang, F., Meng, Z. Contact dynamics and control for tethered space net robot. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(2): 918–929.

    Article  Google Scholar 

  35. Liu, Y., Huang, P., Zhang, F., Zhao, Y. Robust distributed consensus for deployment of Tethered Space Net Robot. Aerospace Science and Technology, 2018, 77: 524–533.

    Article  Google Scholar 

  36. Scheeres, D. J. Orbital mechanics about small bodies. Acta Astronautica, 2012, 72: 1–14.

    Article  Google Scholar 

  37. Hamilton, D. P., Burns, J. A. Orbital stability zones about asteroids: II. The destabilizing effects of eccentric orbits and of solar radiation. Icarus, 1991, 96: 43–64.

    Article  Google Scholar 

  38. Werner, R. A. The gravitational potential of a homogeneous polyhedron or don’t cut corners. Celestial Mechanics and Dynamical Astronomy, 1994, 59(3): 253–278.

    Article  Google Scholar 

  39. Yu, Y., Michel, P., Hirabayashi, M., Schwartz, S. R., Zhang, Y., Richardson, D. C., Liu, X. The dynamical complexity of surface mass shedding from a top-shaped asteroid near the critical spin limit. Astronomical Journal, 2018, 156(2): 59.

    Article  Google Scholar 

  40. Botta, E. M., Sharf, I., Misra, A. K., Teichmann, M. On the simulation of tether-nets for space debris capture with Vortex Dynamics. Acta Astronautica, 2016, 123: 91–102.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2019YFA0706500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hexi Baoyin.

Additional information

Yu Zhang received his B.S. degree in engineering from the South China University of Technology, China, in 2020. At present, he is a graduate student at Tsinghua University. His current research interest is nonlinear dynamics theory.

Yang Yu is currently an associate professor at Beihang University in Beijing, China. He joined the Faculty of Theoretical Mechanics in April 2016. He obtained his B.S. degree in physics from Beihang University in 2009 and his Ph.D. degree in aeronautics & astronautics from Tsinghua University in 2014. He held a postdoctoral position at Observatoire de la Côte d’Azur in France from 2014 to 2016. His research interests include the Hamiltonian dynamics of celestial systems, and the formation and evolution of solar system small bodies.

Hexi Baoyin is currently a professor at Tsinghua University. His current research interests include orbit theory in irregular gravitational fields, and interplanetary mission analysis and optimization.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Yu, Y. & Baoyin, H. Dynamical behavior of flexible net spacecraft for landing on asteroid. Astrodyn 5, 249–261 (2021). https://doi.org/10.1007/s42064-021-0102-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42064-021-0102-4

Keywords

Navigation