Skip to main content
Log in

Traveling wave solutions for explicit-time nonlinear photorefractive dynamics equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We solve the traveling wave solution for the explicit-time nonlinear photorefractive dynamics equation. Nonlinearity comes from the support of linear and quadratic electro-optic effects. We investigate two cases, i.e., the wave assumes to be in low amplitude and without such an assumption. In this step, we apply the direct solution method by setting the ansatz of the wave solution from the start. The first case relies on the Taylor series expansion to integrate the equations of these results and get an exact solution for the traveling wave. In the second case, we thoroughly evaluate the original dynamic equation. It reduces to a first-order differential equation that provides the initial conditions for a numerical evaluation. The exact solution shows the propagation wave traveling in the positive and negative directions in the diffraction axis direction. An angle between the traveling wave and the center of the propagation plane decreases as the value of the displacement constant in the solution increases. In addition, we also study the power of the traveling wave, and the numerical solution gives a kink-like traveling wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Christodoulides, D.N., Carvalho, M.I.: Bright, dark, and gray spatial soliton states in photorefractive media. JOSA B 12, 1628–1633 (1995)

    Google Scholar 

  2. Segev, M., Agranat, A. J.: Spatial solitons in centrosymmetric photorefractive media. Opt. Lett. 22, 1299–1301 (1997)

    Google Scholar 

  3. Petrović, M., Jović, D., Belić, M., Schrćder, J., Jander, Ph., Denz, C.: Two dimensional counterpropagating spatial solitons in photorefractive crystals. Phys. Rev. Lett. 95, 053901 (2005)

    Google Scholar 

  4. Shwetanshumala, S., Konar, S.: Bright optical spatial solitons in a photorefractive waveguide. Phys. Scr. 82, 045404 (2010)

    MATH  Google Scholar 

  5. Katti, A., Katti, C.P.: Gap solitons supported by an optical lattice in biased photorefractive crystals having both the linear and quadratic electro-optic effect. Zeitschrift für Naturforschung A 75, 749–756 (2020)

    Google Scholar 

  6. Motzek, K., Kaiser, F., Weilnau, C., Denz, C., McCarthy, G., Krolikowski, W., Desyatnikov, A., Kivshar, Y.S.: Multi-component vector solitons in photorefractive crystals. Opt. Commun. 209, 501–506 (2002)

    Google Scholar 

  7. Xu, Z., Kartashov, Y.V., Torner, L.: Gap solitons supported by optical lattices in photorefractive crystals with asymmetric nonlocality. Opt. Lett. 31, 2027–2029 (2006)

    Google Scholar 

  8. Zhang, T.H., Ren, X.K., Wang, B.H., Lou, C.B., Hu, Z.J., Shao, W.W., Xu, Y.H., Kang, H.Z., Yang, J., Yang, D.P., Feng, L.: Surface waves with photorefractive nonlinearity. Phys. Rev. A 76, 013827 (2007)

    Google Scholar 

  9. Katti, A.: Effect of temperature on incoherently coupled Dark–Bright soliton pair in photorefractive crystals. In: Tiwari, M., Maddila, R.K., Garg, A.K., Kumar, A., Yupapin, P. (eds) Optical and Wireless Technologies. Lecture Notes in Electrical Engineering, vol. 771 (2022). Springer, Singapore. https://doi.org/10.1007/978-981-16-2818-4_3

  10. Chen, Z., Segev, M., Christodoulides, D.N.: Optical spatial solitons: historical overview and recent advances. Rep. Prog. Phys. 75, 086401 (2012)

    Google Scholar 

  11. Kumari, B., Katti, A., Alvi, P.A.: Coupling of optical spatial solitons in photorefractive multiple quantum well planar waveguide. Optik 183, 1048–1060 (2019)

    Google Scholar 

  12. Konar, S., Biswas, A.: Properties of optical spatial solitons in photorefractive crystals with special emphasis to two-photon photorefractive nonlinearity. Opt. Mater. 35, 2581–2603 (2013)

    Google Scholar 

  13. Hao, L., Hou, C., Wang, X., Wang, Q., Mu, H.: Coherently coupled bright-bright screening soliton pairs in biased centrosymmetric photorefractive crystals. Optik 127, 5928–5934 (2016)

    Google Scholar 

  14. Katti, A.: Bright pyroelectric quasi-solitons in a photorefractive waveguide. Optik 156, 433–438 (2018)

    Google Scholar 

  15. Dai, C.Q., Wang, Y.Y.: Coupled spatial periodic waves and solitons in the photovoltaic photorefractive crystals. Nonlinear Dyn. 102, 1733–1741 (2020)

    Google Scholar 

  16. Pierangeli, D., Di Mei, F., Conti, C., Agranat, A.J., DelRe, E.: Spatial rogue waves in photorefractive ferroelectrics. Phys. Rev. Lett. 115, 093901 (2015)

    Google Scholar 

  17. Pierangeli, D., Conti, C., DelRe, E.: Rogue waves in photorefractive media. In: Nonlinear Guided Wave Optics: A testbed for extreme waves, pp. 8-1-8-21 (2017). IOP Publishing, Bristol, UK

  18. Hermann-Avigliano, C., Salinas, I.A., Rivas, D.A., Real, B., Mančić, A., Mejía-Cortés, C., Maluckov, A., Vicencio, R.A.: Spatial rogue waves in photorefractive SBN crystals. Opt. Lett. 44, 2807–2810 (2019)

    Google Scholar 

  19. Jia, S., Lee, J., Fleischer, J.W., Siviloglou, G.A., Christodoulides, D.N.: Diffusion-trapped Airy beams in photorefractive media. Phys. Rev. Lett. 104, 253904 (2010)

    Google Scholar 

  20. Wiersma, N., Marsal, N., Sciamanna, M., Wolfersberger, D.: Airy beam self-focusing in a photorefractive medium. Sci. Rep. 6, 1–6 (2016)

    Google Scholar 

  21. Suarez, R.A., Vieira, T.A., Yepes, I.S., Gesualdi, M.R.: Photorefractive and computational holography in the experimental generation of Airy beams. Opt. Commun. 366, 291–300 (2016)

    Google Scholar 

  22. Zhan, K., Yang, Z., Liu, B., Xu, X., Jiao, Z., Jia, Y.: Propagations of Airy beams and nonlinear accelerating optical beams in photorefractive crystals with asymmetric nonlocality. Ann. Phys. 530, 1800033 (2018)

    MathSciNet  Google Scholar 

  23. Bouchet, T., Marsal, N., Sciamanna, M., Wolfersberger, D.: Two dimensional Airy beam soliton. Sci. Rep. 12, 1–6 (2022)

    Google Scholar 

  24. Carvalho, M.I., Facão, M., Christodoulides, D.N.: Self-bending of dark and gray photorefractive solitons. Phys. Rev. E 76, 016602 (2007)

    Google Scholar 

  25. Hao, L., Wang, Q., Hou, C.: Spatial solitons in biased photorefractive materials with both the linear and quadratic electro-optic effects. J. Mod. Opt. 61, 1236–1245 (2014)

    Google Scholar 

  26. Su, Y., Jiang, Q., Ji, X.: Photorefractive spatial solitons supported by pyroelectric effects in strontium barium niobate crystals. Optik 126, 1621–1624 (2015)

    Google Scholar 

  27. Hao, L., Hou, C., Wang, X., Wang, Q., Mu, H.: Coherently coupled bright-bright screening soliton pairs in biased centrosymmetric photorefractive crystals. Optik 127, 5928–5934 (2016)

    Google Scholar 

  28. Hao, L., Wang, Q., Hou, C.: Temperature effects on (1+ 1)-dimensional steady-state bright spatial solitons in biased photorefractive crystals with both the linear and quadratic effects. J. Mod. Opt. 63, 1000–1008 (2016)

    Google Scholar 

  29. Segev, M., Crosignani, B., Yariv, A., Fischer, B.: Spatial solitons in photorefractive media. Phys. Rev. Lett. 68, 923 (1992)

    Google Scholar 

  30. She, W.L., Lee, K.K., Lee, W.K.: All optical quasi-steady-state photorefractive spatial solitons. Phys. Rev. Lett. 85, 2498 (2000)

    Google Scholar 

  31. DelRe, E., Palange, E.: Optical nonlinearity and existence conditions for quasi-steady-state photorefractive solitons. JOSA B 23, 2323–2327 (2006)

    Google Scholar 

  32. Keqing, L., Tiantong, T., Yanpeng, Z.: One-dimensional steady-state spatial solitons in photovoltaic photorefractive materials with an external applied field. Phys. Rev. A 61, 053822 (2000)

    Google Scholar 

  33. Jin-song, L.: Universal theory of steady-state one-dimensional photorefractive solitons. Chin. Phys. 10, 1037 (2001)

    Google Scholar 

  34. Zhan, K., Hou, C., Du, Y.: Self-deflection of steady-state bright spatial solitons in biased centrosymmetric photorefractive crystals. Opt. Commun. 283, 138–141 (2010)

    Google Scholar 

  35. Zhang, Y.H., Su, W., Duan, C.L., Tian, A.L.: Steady state multiple dark spatial solitons in the biased photorefractive-photovoltaic crystals. Optoelectron. Lett. 14, 367–371 (2018)

    Google Scholar 

  36. Katti, A., Yadav, R.A., Prasad, A.: Bright optical spatial solitons in photorefractive waveguides having both the linear and quadratic electro-optic effect. Wave Motion 77, 64–76 (2018)

    MathSciNet  MATH  Google Scholar 

  37. Dai, C.Q., Wang, Y.Y.: Coupled spatial periodic waves and solitons in the photovoltaic photorefractive crystals. Nonlinear Dyn. 102, 1733–1741 (2020)

    Google Scholar 

  38. Zhu, H.P., Chen, H.Y.: Parameter regulation for periodic wave pair and photovoltaic soliton pair excitations in the bias photovoltaic-photorefractive crystal. Res. Phys. 30, 104872 (2021)

    MathSciNet  Google Scholar 

  39. DelRe, E., Crosignani, B., Di Porto, P.: Photorefractive solitons and their underlying nonlocal physics. In: Progress in optics, vol. 53, pp. 153–200. Elsevier

  40. Tsarukyan, L., Badalyan, A., Drampyan, R.: Bending optical soliton-induced waveguide channels in a photorefractive LiNbO3 crystal. Appl. Phys. B 128, 1–12 (2022)

    Google Scholar 

  41. Peccianti, M., Conti, C., Assanto, G., De Luca, A., Umeton, C.: All-optical switching and logic gating with spatial solitons in liquid crystals. Appl. Phys. Lett. 81, 3335–3337 (2002)

    Google Scholar 

  42. Peccianti, M., Conti, C., Assanto, G., De Luca, A., Umeton, C.: Routing of anisotropic spatial solitons and modulational instability in liquid crystals. Nature 432, 733–737 (2004)

    Google Scholar 

  43. Zhan, K., Hou, C., Pu, S.: Temporal behavior of spatial solitons in centrosymmetric photorefractive crystals. Opt. Laser Technol. 43, 1274–1278 (2011)

    Google Scholar 

  44. Grandpierre, A.G., Christodoulides, D.N., Coskun, T.H., Segev, M., Kivshar, Y.S.: Gray spatial solitons in biased photorefractive media. JOSA B 18, 55–63 (2001)

    Google Scholar 

  45. Katti, A.: Coupling of separate solitons in a series circuit of two photon photorefractive crystals exhibiting simultaneous quadratic and linear nonlinearities. Optik 206, 164212 (2020)

    Google Scholar 

  46. Fressengeas, N., Maufoy, J., Kugel, G.: Temporal behavior of bidimensional photorefractive bright spatial solitons. Phys. Rev. E 54, 6866 (1996)

    Google Scholar 

  47. Lu, K., Zhao, W., Chen, Y., Yang, Y., Zhang, L., Yang, Y., Li, J., Zhang, Y., Xu, J.: Temporal development of spatial solitons in biased photorefractive-photovoltaic materials. J. Mod. Opt. 55, 1571–1585 (2008)

    MATH  Google Scholar 

  48. Lu, K., Zhao, W., Zhang, L., Li, K., Zhang, Y., Liu, X., Zhang, Y., Xu, J.: Temporal behavior of dark spatial solitons in closed-circuit photovoltaic media. Opt. Commun. 281, 2913–2917 (2008)

    Google Scholar 

  49. Zhan, K., Hou, C., Pu, S.: Temporal behavior of spatial solitons in centrosymmetric photorefractive crystals. Opt. Laser Technol. 43, 1274–1278 (2011)

    Google Scholar 

  50. Ziółkowski, A.: Temporal analysis of solitons in photorefractive semiconductors. J. Opt. 14, 035202 (2012)

    Google Scholar 

  51. Katti, A.: Temporal behaviour of bright solitons in photorefractive crystals having both the linear and quadratic electro-optic effect. Chaos Solitons Fractals 126, 23–31 (2019)

    MathSciNet  Google Scholar 

  52. Kukhtarev, N.V., Markov, V.B., Odulov, S.G., Soskin, M.S., Vinetskii, V.L.: Holographic storage in electrooptic crystals. I. Steady state. ferroelectrics 22, 949–960 (1978)

    Google Scholar 

  53. He, J.H.: The variational iteration method for eighth-order initial-boundary value problems. Phys. Scr. 76, 680–682 (2007)

    MathSciNet  MATH  Google Scholar 

  54. Kudryashov, N.A.: One method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 2248–2253 (2012)

    MathSciNet  MATH  Google Scholar 

  55. Malwe, B.H., Betchewe, G., Doka, S.Y., Kofane, T.C.: Travelling wave solutions and soliton solutions for the nonlinear transmission line using the generalized Riccati equation mapping method. Nonlinear Dyn. 84, 171–177 (2016)

    MathSciNet  MATH  Google Scholar 

  56. Gunter, P., Huignard, J.P. (eds.): Photorefractive Materials and Their Applications 1. Springer Science + Business Media Inc, New York (2006)

    Google Scholar 

  57. Kapitula, T., Sandstede, B.: Stability of bright solitary-wave solutions to perturbed nonlinear Schrödinger equations. Phys. D 124, 58–103 (1998)

    MathSciNet  MATH  Google Scholar 

  58. Kivshar, Y.S., Agrawal, G.: Optical Solitons: From Fibers to Photonic Crystals. Academic press, Cambridge (2003)

  59. Liu, X., Jiao, Y., Wang, Y., Zhou, Q., Wang, W.: Kink soliton behavior study for systems with power-law nonlinearity. Results Phys. 33, 105162 (2022)

Download references

Acknowledgements

We thank Hanifah Azzaura Musyayy-adah for the helpful discussion.

Funding

This work supported by the Lembaga Penelitian dan Pengabdian Masyarakat (LPPM), Universitas Andalas under a fundamental research grant (No.Ref.T/66/UN.16.17. PT.01.03/IS-RD/2021).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis performed by ZA, AR, MS, and WH. The first draft of the manuscript written by AR and all authors commented on previous versions of the manuscript. The final manuscript has been read and approved by all authors.

Corresponding author

Correspondence to Zulfi Abdullah.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

To prove the solution of \(q(s,\xi )\) in Eq. (25) as the traveling wave exact solution of the explicit-time nonlinear photoreactive dynamics equation in the low amplitude case, substitute Eq. (25) into Eq. (6). Thus, each of the terms can be written in the form

$$\begin{aligned}&T_{1}=ce^{ic(s-c\xi )}\sqrt{-\frac{-0.5c^{2}+\beta _{1}+\beta _{2}}{(-1+e^{-\tau })(\beta _{1}+2\beta _{2})}}~\nonumber \\&\quad \text {sech}\left[ \sqrt{2}~\sqrt{-0.5c^{2}+\beta _{1}+\beta _{2}}(s-c\xi ) \right] \nonumber \\&\quad \left( \sqrt{2}~c+2i\sqrt{-0.5c^{2}+\beta _{1}+\beta _{2}}\right. ~\nonumber \\&\quad \left. \text {tanh}\left[ \sqrt{2}~\sqrt{-0.5c^{2}+\beta _{1}+\beta _{2}}(s-c\xi ) \right] \right) , \end{aligned}$$
(S1)
$$\begin{aligned}&T_{2}=\frac{1}{2}~ce^{ic(s-c\xi )}\sqrt{-\frac{-0.5c^{2}+\beta _{1}+\beta _{2}}{(-1+e^{-\tau })(\beta _{1}+2\beta _{2})}}\nonumber \\&\quad ~\text {sech}\left[ \sqrt{2}~\sqrt{-0.5c^{2}+\beta _{1}+\beta _{2}}(s-c\xi ) \right] \nonumber \\&\quad \Biggl ( -1.41421 c^{2}+\left( 1.41421 c^{2} - 2.82843 \beta _{1} - 2.82843 \beta _{2} \right) ~\nonumber \\&\quad \text {sech}\left[ \sqrt{2}~\sqrt{-0.5c^{2}+\beta _{1}+\beta _{2}}(s-c\xi ) \right] ^{2}\nonumber \\&\quad -\left( 0+4i \right) c\sqrt{-0.5c^{2}+\beta _{1}+\beta _{2}}~\nonumber \\&\quad \text {tanh}\left[ \sqrt{2}~\sqrt{-0.5c^{2}+\beta _{1}+\beta _{2}} (s-c\xi )\right] \nonumber \\&\quad +\left( -1.41421 c^{2} + 2.82843 \beta _{1} + 2.82843 \beta _{2} \right) ~\nonumber \\&\quad \text {tanh}~\left[ \sqrt{2}~\sqrt{-0.5 c^{2}+\beta _{1}+\beta _{2}} \left( s-c\xi \right) \right] ^{2} \Biggl ), \end{aligned}$$
(S2)
$$\begin{aligned}&T_{3}=~-\sqrt{2}~e^{ic(s-c\xi )}\left( \beta _{1}+\beta _{2} \right) \nonumber \\&\quad \sqrt{-\frac{-0.5c^{2}+\beta _{1}+\beta _{2}}{(-1+e^{-\tau })(\beta _{1}+2\beta _{2})}}~\nonumber \\&\quad \text {sech}\left[ \sqrt{2}~\sqrt{-0.5c^{2}+\beta _{1}+\beta _{2}}(s-c\xi ) \right] , \end{aligned}$$
(S3)
$$\begin{aligned}&T_{4}=~-1.41421~e^{ic(s-c\xi )}\left( 1c^{2}-2\beta _{1}-2\beta _{2}\right) \nonumber \\&\quad \sqrt{-\frac{-0.5c^{2}+\beta _{1}+\beta _{2}}{(-1+e^{-\tau })(\beta _{1}+2\beta _{2})}}~\nonumber \\&\quad \text {sech}\left[ \sqrt{2}~\sqrt{-0.5c^{2}+\beta _{1}+\beta _{2}}(s-c\xi ) \right] ^{3}, \end{aligned}$$
(S4)

where \(T_{1}=iq_{\xi }\), \(T_{2}=1/2~q_{ss}\), \(T_{3}=-(\beta _{1}+\beta _{2})q\), and \(T_{4}=-\left( \beta _{1}+2\beta _{2} \right) \left( \exp \left[ -\tau \right] -1\right) \left| q \right| ^{2}q\). If we add up all the terms, then \(T_{1}+T_{2}+T_{3}+T_{4}=0\) (valid as an exact solution).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, Z., Ripai, A., Syafwan, M. et al. Traveling wave solutions for explicit-time nonlinear photorefractive dynamics equation. Nonlinear Dyn 111, 16515–16526 (2023). https://doi.org/10.1007/s11071-023-08610-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08610-8

Keywords

Navigation