Skip to main content
Log in

A harmonic balance-based method to predict nonlinear forced response and temperature rise of dry friction systems including frictional heat transfer

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

A Correction to this article was published on 27 June 2023

This article has been updated

Abstract

Dry friction dampers in turbomachinery not only decrease the vibration level, but also generate frictional heat. This thermal process may cause a significant temperature rise at the contact interface, producing thermal expansion and altering tribological properties subsequently. These effects in turn can change structural dynamics. Besides, the temperature rise may also cause the material melting and ablation, leading to damper failure. Hence, the structural dynamics and the thermal process in dry friction systems are interacting. The thermomechanical coupling should be included in analyses. In this paper, a novel numerical method, namely Dry Friction Thermo-Mechanical Coupling Response Prediction (DFTMCP), is proposed. Based on the multi-harmonic balance method, the DFTMCP can synchronously predict the nonlinear forced response and interface temperature in the steady state. This method is under the framework of steady heat transfer assumption, and a dimensionless number is proposed to determine the rationality of the assumption. To guarantee efficiency and convergence, an ad hoc model reduction technique for the nonlinear thermomechanical coupling problem and the corresponding analytical Jacobian matrix, which are also the highlights of the work, are implemented. The former reduces the dimension of the governing equations by over 98.6% while the latter makes the time cost drop over 37 times. By using the proposed numerical method, two essential coupling factors, the thermoelastic deformation and the friction coefficient variation at the interface, are considered and discussed quantitatively for the influence on the forced response through the finite element model of a blade with a flat underplatform damper in engineering. A convergence analysis has been performed to validate the correctness of the simulation results. Results show that under the specific rotational speed, the average temperature at the contact surface rises by 415 °C, and the maximum local temperature increases to 1229 °C, which is close to the melting point. Ignoring the thermomechanical coupling effect leads to a 19.0% misprediction of the optimal centrifugal force and a 21.4% underestimation of the resonant peak.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Data availability

The results presented in this work can be replicated by implementing the equations and the finite element model presented in this paper. All relevant equations have been included to enable readers to replicate the results. The mesh of the finite element model will be made available by request.

Change history

References

  1. Griffin, J.H.: A review of friction damping of turbine blade vibration. Int. J. Turbo Jet Engines 7(3–4), 297–308 (1990)

    Google Scholar 

  2. Ferhatoglu, E., Gastaldi, C., Botto, D., Zucca, S.: An experimental and computational comparison of the dynamic response variability in a turbine blade with under-platform dampers. Mech. Syst. Signal. Pr. 172, 108987 (2022)

    Google Scholar 

  3. Krack, M., Salles, L., Thouverez, F.: Vibration prediction of bladed disks coupled by friction joints. Arch. Comput. Method E 24(3), 589–636 (2017)

    MATH  Google Scholar 

  4. Cherikh, M., Bauzin, J., Laraqi, N.: Experimental estimation of transient evolution of three thermal parameters characterizing a dry friction interface. Int. J. Heat Mass Trans. 169, 120986 (2021)

    Google Scholar 

  5. Jabbar, N.A., Hussain, I.Y., Abdullah, O.I.: Thermal and thermoelastic problems in dry friction clutch: a comprehensive review. Heat Transf 50(8), 7855–7878 (2021)

    Google Scholar 

  6. Lavella, M., Botto, D.: Fretting wear of alloy steels at the blade tip of steam turbines. Wear 426–427, 735–740 (2019)

    Google Scholar 

  7. Botto, D., Lavella, M.: High temperature tribological study of cobalt-based coatings reinforced with different percentages of alumina. Wear 318(1–2), 89–97 (2014)

    Google Scholar 

  8. Pauzi, A.A., Ghazali, M.J., Zamri, W.F.H.W., et al.: Wear characteristics of superalloy and hardface coatings in gas turbine applications-a review. Metals 10(9), 1171 (2020)

    Google Scholar 

  9. Pearson, S.R., Shipway, P.H., Abere, J.O., et al.: The effect of temperature on wear and friction of a high strength steel in fretting. Wear 303(1–2), 622–631 (2013)

    Google Scholar 

  10. Guérin, N., Thorin, A., Thouverez, F., et al.: Thermomechanical model reduction for efficient simulations of rotor-stator contact interaction. J. Eng. Gas Turbine Power 141(2), 022501 (2019)

    Google Scholar 

  11. Thorin, A., Guérin, N., Legrand, M., et al.: Nonsmooth thermoelastic simulations of blade-casing contact interactions. J. Eng. Gas Turbine Power 141(2), 022502 (2019)

    Google Scholar 

  12. Lavella, M.: Contact properties and wear behaviour of nickel based superalloy René 80. Metals 6, 159 (2016)

    Google Scholar 

  13. Schwingshackl, C.W., Petrov, E.P., Ewins, D.J.: Measured and estimated friction interface parameters in a nonlinear dynamic analysis. Mech Syst Signal Pr 28, 574–584 (2012)

    Google Scholar 

  14. Gastaldi, C., Berruti, T.M., Gola, M.M.: Best practices for underplatform damper designers, proceedings of the institution of mechanical engineers. Proc. Inst. Mech. Eng., Part C 232(7), 1221–1235 (2018)

    Google Scholar 

  15. Gastaldi, C., Gola, M.M.: Criteria for best performance of pre-optimized solid dampers. J. Eng. Gas Turbines Power 141(4), 75961 (2019)

    Google Scholar 

  16. Bowden, F.P., Ridler, K.E.W.: A note on the surface temperature of sliding metals. Math. Proc. Cambr. 31(3), 431–432 (1935)

    Google Scholar 

  17. Blok, H.: Theoretical study of temperature rise at surfaces of actual contact under oiliness lubricating conditions. Gen. Discussion Lubric. Inst. Mech. Eng. London 2, 222–235 (1937)

    Google Scholar 

  18. Jaeger, J.C.: Moving sources of heat and the temperature at sliding contacts. Proc. R. Soc. New South Wales 76, 203–224 (1942)

    Google Scholar 

  19. Archard, J.F.: The temperature of rubbing surfaces. Wear 2, 438–455 (1959)

    Google Scholar 

  20. Hamraoui, M., Zouaoui, Z.: Modelling of heat transfer between two rollers in dry friction. Int. J. Therm. Sci. 48(6), 1243–1246 (2009)

    Google Scholar 

  21. Nosko, O.: Thermal boundary conditions to simulate friction layers and coatings at sliding contacts. Int. J. Heat Mass Trans. 127, 1128–1137 (2018)

    Google Scholar 

  22. Bauzin, J., Nguyen, M., Laraqi, N., Cherikh, M.: Thermal characterization of frictional interfaces using experiments and inverse heat conduction methods. Int. J. Therm. Sci. 137, 431–437 (2019)

    Google Scholar 

  23. Smith, E.H., Arnell, R.D.: A new approach to the calculation of flash temperatures in dry, sliding contacts. Tribol. Lett. 52(3), 407–414 (2013)

    Google Scholar 

  24. Smith, E.H., Arnell, R.D.: The prediction of frictional temperature increases in dry, sliding contacts between different materials. Tribol. Lett. 55(2), 315–328 (2014)

    Google Scholar 

  25. Wang, L., He, Y., Zhou, J., et al.: Effect of temperature on the frictional behaviour of an aluminium alloy sliding against steel during ball-on-disc tests. Tribol. Int. 43(1–2), 299–306 (2010)

    Google Scholar 

  26. Mann, R., Magnier, V., Brunel, J.F., Dufrenoy, P., Henrion, M., Guillet-Revol, E.: Thermomechanical characterization of high-speed train braking materials to improve models: numerical validation via a comparison with an experimental braking test. Tribol. Int. 156, 106818 (2021)

    Google Scholar 

  27. Li, W., Pang, D., Hao, W.: Effects of the helix angle, the friction coefficient and mechanical errors on unsteady-state temperature field of helical gear and thermal sensitivity analysis. Int. J. Heat Mass Trans. 144, 118669 (2019)

    Google Scholar 

  28. Lavella, M., Botto, D., Gola, M.M.: Design of a high-precision, flat-on-flat fretting test apparatus with high temperature capability. Wear 302(1–2), 1073–1081 (2013)

    Google Scholar 

  29. Lavella, M., Botto, D.: Fretting wear characterization by point contact of nickel superalloy interfaces. Wear 271, 1543–1551 (2011)

    Google Scholar 

  30. Rowe, K.G., Bennett, A.I., Krick, B.A., et al.: In situ thermal measurements of sliding contacts. Tribol. Int. 62, 208–214 (2013)

    Google Scholar 

  31. Belov, V.M., Tkachuk, D.V., Bogdanovich, P.N.: Methods for recording the temperature in the friction and mechanical working of the solid bodies: a review. J. Frict. Wear 27(4), 74–83 (2006)

    Google Scholar 

  32. Oestringer, L.J., Proppe, C.: On the transient thermomechanical contact simulation for two sliding bodies with rough surfaces and dry friction. Tribol. Int. 170, 107425 (2022)

    Google Scholar 

  33. Chen, W.W., Wang, Q.J.: Thermomechanical analysis of elastoplastic bodies in a sliding spherical contact and the effects of sliding speed, heat partition, and thermal softening. J. Tribol. 130, 041402 (2008)

    Google Scholar 

  34. Seitz, A., Wall, W.A., Popp, A.: Nitsches method for finite deformation thermomechanical contact problems. Comput. Mech. 63, 1091–1110 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Batailly, A., Agrapart, Q., Millecamps, A., et al.: Experimental and numerical simulation of a rotor/stator interaction event localized on a single blade within an industrial high-pressure compressor. J. Sound Vib. 375, 308–331 (2016)

    Google Scholar 

  36. Almeida, P., Gibert, C., Thouverez, F., et al.: Experimental analysis of dynamic interaction between a centrifugal compressor and its casing. J. Eng. Gas Turbines Power 137(3), 031008 (2015)

    Google Scholar 

  37. Pesaresi, L., Salles, L., Jones, A., et al.: Modelling the nonlinear behaviour of an underplatform damper test rig for turbine applications. Mech. Syst. Signal. Pr. 85, 662–679 (2017)

    Google Scholar 

  38. Botto, D., Lavella, M., Gola, M.M.: Measurement of Contact Parameters of Flat on Flat Contact Surfaces at High Temperature, pp. 1325–1332. American Society of Mechanical Engineers (ASME), Copenhagen (2012)

    Google Scholar 

  39. Molinari, A., Estrin, Y., Mercier, S.: Dependence of the coefficient of friction on the sliding conditions in the high velocity range. J. Tribol. 121, 35–41 (1999)

    Google Scholar 

  40. Jiang, J., Ulbrich, H.: Derivation of coefficient of friction at high sliding speeds from energy conservation over the frictional interface. Wear 247(1), 66–75 (2001)

    Google Scholar 

  41. Yuan, J., Fantetti, A., Denimal, E., et al.: Propagation of friction parameter uncertainties in the nonlinear dynamic response of turbine blades with underplatform dampers. Mech Syst Signal Pr 156, 107673 (2021)

    Google Scholar 

  42. Schwingshackl, C.W., Petrov, E.P., Ewins, D.J.: Effects of contact interface parameters on vibration of turbine bladed disks with underplatform dampers. J. Eng. Gas Turbines Power 134(3), 032507 (2012)

    Google Scholar 

  43. Korkmaz, I., Barrau, J.J., Berthillier, M., Creze, S.: Theoretical dynamic analysis of a cantilever beam damped by a dry friction damper. Int. Design Eng. Tech. Conf. Comput. Inf. Eng. Conf. 3A, 0358 (1995)

    Google Scholar 

  44. Toufifine, A., Barrau, J.J., Berthillier, M.: Dynamic study of a simplified mechanical system with presence of dry friction. J. Sound Vib. 225(1), 95–109 (1999)

    Google Scholar 

  45. Ullah, M.W., Rahman, M.S., Uddin, M.A.: A modified harmonic balance method for solving forced vibration problems with strong nonlinearity. J. Low Freq. Noise Vib. Act. Control 40(2), 1096–1104 (2021)

    Google Scholar 

  46. Wu, Y.G., Li, L., Fan, Y., et al.: Design of semi-active dry friction dampers for steady-state vibration: sensitivity analysis and experimental studies. J. Sound Vib. 459, 114850 (2019)

    Google Scholar 

  47. Radecki, R., Leamy, M.J., Packo, P., Klepka, A.: Prediction of higher-order harmonics generation due to contact stiffness hysteresis using Harmonic Balance: theory and experimental validation. Nonlinear Dyn. 103, 541–556 (2021)

    Google Scholar 

  48. Zucca, S., Firrone, C.M.: Nonlinear dynamics of mechanical systems with friction contacts: coupled static and dynamic multi-harmonic balance method and multiple solutions. J. Sound Vib. 333(3), 916–926 (2014)

    Google Scholar 

  49. Ma, H.Y., Li, L., Wu, Y.G., et al.: Design of dry friction dampers for thin-walled structures by an accelerated dynamic Lagrange method. J. Sound Vib. 489, 115550 (2020)

    Google Scholar 

  50. Berthold, C., Gross, J., Frey, C., Krack, M.: Development of a fully-coupled harmonic balance method and a refined energy method for the computation of flutter-induced Limit Cycle Oscillations of bladed disks with nonlinear friction contacts. J. Fluid Struct. 102, 103233 (2021)

    Google Scholar 

  51. Krack, M., Gross, J.: Harmonic Balance for Nonlinear Vibration Problems. Springer, Cham (2019)

    MATH  Google Scholar 

  52. Woiwode, L., Gross, J., Krack, M.: Effect of modal interactions on friction-damped self-excited vibrations. J. Vibr. Acoust. Trans. ASME 143(3), 031003 (2021)

    Google Scholar 

  53. Siewert, C., Panning, L., Wallaschek, J., et al.: Multiharmonic forced response analysis of a turbine blading coupled by nonlinear contact forces. J. Eng. Gas Turbines Power 132(8), 082501 (2010)

    Google Scholar 

  54. Afzal, M., Lopez Arteaga, I., Kari, L.: An analytical calculation of the Jacobian matrix for 3D friction contact model applied to turbine blade shroud contact. Comput. Struct. 177, 204–217 (2016)

    Google Scholar 

  55. Wu, Y.G., Li, L., Fan, Y., et al.: Design of wave-like dry friction and piezoelectric hybrid dampers for thin-walled structures. J. Sound Vib. 493, 115821 (2021)

    Google Scholar 

  56. Poudou, O.: Modeling and analysis of the dynamics of dry-friction-damped structural systems, 2007.

  57. Petrov, E.P., Ewins, D.J.: Effects of damping and varying contact area at blade-disk joints in forced response analysis of bladed disk assemblies. J. Eng. Gas Turbines Power 128, 403–410 (2006)

    Google Scholar 

  58. Laxalde, D., Thouverez, F., Lombard, J.P.: Forced response analysis of integrally bladed disks with friction ring dampers. J. Vib. Acoust. 132(1), 011013 (2010)

    Google Scholar 

  59. Petrov, E.P.: A high-accuracy model reduction for analysis of nonlinear vibrations in structures with contact interfaces. J. Eng. Gas Turbines Power 133(10), 102503 (2011)

    Google Scholar 

  60. Quaegebeur, S., Chouvion, B., Thouverez, F.: Model reduction of nonlinear cyclic structures based on their cyclic symmetric properties. Mech. Syst. Signal. Pr. 145, 106970 (2020)

    Google Scholar 

  61. Nyssen, F., Vadcard, T., Piollet, E., et al.: Strongly coupled thermo-mechanical casing/abradable model for rotor/stator interactions. ASME Turbo Expo Turbomach. Tech. Conf. Expos. 7B, 91447 (2019)

    Google Scholar 

  62. Nachtergaele, P., Rixen, D.J., Steenhoek, A.M.: Efficient weakly coupled projection basis for the reduction of thermo-mechanical models. J. Comput. Appl. Math. 234(7), 2272–2278 (2010)

    MathSciNet  MATH  Google Scholar 

  63. Guerin, N., Thouverez, F., Gibert, C., et al.: Thermomechanical component mode synthesis for blade casing interaction prediction. ASME Turbo. Expo 2017 Turbomach. Tech. Conf. Expos. 7, 64342 (2017)

    Google Scholar 

  64. Liu, Z., Kannatey-Asibu, E., Wang, Y., et al.: Nonlinear dynamic analysis of ultrasonic metal welding using a harmonic balance method. Procedia CIRP 76, 89–93 (2018)

    Google Scholar 

  65. Liu, Z., Li, Y., Wang, Y., et al.: Nonlinear dynamics of friction heating in ultrasonic welding. J. Eng. Ind. 141(6), 061011 (2019)

    Google Scholar 

  66. Agrapart, Q., Nyssen, F., Lavazec, D., Dufrenoy, P., Batailly, A.: Multi-physics numerical simulation of an experimentally predicted rubbing event in aircraft engines. J. Sound Vib. 460, 114869 (2019)

    Google Scholar 

  67. Krack, M.: Extension of the single-nonlinear-mode theory by linear attachments and application to exciter-structure interaction. J. Sound Vib. 505, 116120 (2021)

    Google Scholar 

  68. Nyssen, F., Batailly, A.: Thermo-mechanical modeling of abradable coating wear in aircraft engines. J. Eng. Gas Turbines Power 141(2), 021031 (2019)

    Google Scholar 

  69. Afzal, A., Abdul Mujeebu, M.: Thermo-mechanical and structural performances of automobile disc brakes: a review of numerical and experimental studies. Arch. Comput. Method E 26, 1489–1513 (2019)

    Google Scholar 

  70. Hu, B., Zhang, X., Liu, Y., Yan, J., Liu, X., Wang, X., Sun, R.: 3D quasi-transient thermo-mechanical analysis for vehicle brake disc. J. Mech. Sci. Technol. 36, 969–981 (2022)

    Google Scholar 

  71. Cameron, T.M., Griffin, J.H.: An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems. J. Appl. Mech. 56(1), 149–154 (1989)

    MathSciNet  MATH  Google Scholar 

  72. Botto, D., Zucca, S., Gola, M.M.: Reduced-order models for the calculation of thermal transients of heat conduction/convection FE models. J. Therm. Stresses 30(8), 819–839 (2007)

    Google Scholar 

  73. Yuan, J., Sun, Y., Schwingshackl, C., Salles, L.: Computation of damped nonlinear normal modes for large scale nonlinear systems in a self-adaptive modal subspace. Mech. Syst. Signal Process. 162, 108082 (2022)

    Google Scholar 

  74. Reed, R.C.: The Superalloys: Fundamentals and Applications. Cambridge University Press, Cambridge (2006)

    Google Scholar 

Download references

Acknowledgements

This work is funded by funded by Major Projects of Aero-Engines and Gas Turbines (J2019-IV-0005-0073 and J2019-IV-0023-0091), Jet Propulsion Creativity Center (Projects HKCX2020-02-013, HKCX2020-02-016 and HKCX2022-01-009).

Author information

Authors and Affiliations

Authors

Contributions

QG was involved in investigation, methodology, software, validation, writing—original draft, writing—review and editing. YF helped in supervision, writing—review and editing, resources, funding acquisition, project administration. YGW contributed to conceptualization, methodology, investigation, supervision, writing—review and editing, funding acquisition, project administration. LL helped in supervision, project administration.

Corresponding author

Correspondence to Yaguang Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

The transient temperature part of the \(i{\text{th}}\) component in the temperature vector \({\tilde{\mathbf{\theta }}}^{k}\) for the \({0}^{\mathrm{th}}\) harmonic:

$$ \tilde{\theta }_{i}^{0} (t) = \frac{{\tilde{q}_{i}^{0} }}{{\lambda_{{{\uptheta }i}} }}(1 - {\text{e}}^{{ - \lambda_{{{\uptheta }i}} t}} ) $$
(45)

The transient temperature part of the \(i{\text{th}}\) component in the temperature vector \({\tilde{\mathbf{\theta }}}^{k}\) for other harmonics:

$$ \begin{array}{*{20}c} {\tilde{\theta }_{i}^{n} (t) = \tilde{q}_{i}^{n} \frac{{\lambda_{{{\uptheta }i}} }}{{(n\omega )^{2} + \lambda_{{{\uptheta }i}}^{2} }}{\text{e}}^{{ - \lambda_{{{\uptheta }i}} t}} + \tilde{q}_{i}^{n} \frac{{(n\omega )^{2} }}{{(n\omega )^{2} + \lambda_{{{\uptheta }i}}^{2} }}\sqrt {\left( {\frac{1}{n\omega }} \right)^{2} + \left( {\frac{{\lambda_{{{\uptheta }i}} }}{{(n\omega )^{2} }}} \right)} {\text{e}}^{ - jn\omega t} } \\ {n = 1,2, \cdots ,N_{{\text{h}}} } \\ \end{array} $$
(46)

Appendix 2

Supposing M and N are the invertible matrices with \(m \times m\) and \(n \times n\) dimensions. P is the \(m \times n\) matrix. The inverse of the integral matrix can be expressed through the block matrix calculation as:

$$ \left[ {\begin{array}{*{20}c} {\mathbf{M}} & {\mathbf{P}} \\ {\mathbf{0}} & {\mathbf{N}} \\ \end{array} } \right]^{ - 1} = \left[ {\begin{array}{*{20}c} {{\mathbf{M}}^{ - 1} } & { - {\mathbf{M}}^{ - 1} {\mathbf{PN}}^{ - 1} } \\ {\mathbf{0}} & {{\mathbf{N}}^{ - 1} } \\ \end{array} } \right] $$
(47)

The condensation process can be expressed as

$$ \begin{array}{*{20}c} {\left[ {\begin{array}{*{20}c} {\mathbf{A}} & {\mathbf{B}} \\ {\mathbf{C}} & {\mathbf{D}} \\ \end{array} } \right]\left\{ {\begin{array}{*{20}c} {{\mathbf{x}}_{{\text{o}}} } \\ {{\mathbf{x}}_{{\text{s}}} } \\ \end{array} } \right\} + \left\{ {\begin{array}{*{20}c} {{\mathbf{F}}_{{\text{nl,o}}} } \\ {{\mathbf{F}}_{{\text{nl,s}}} } \\ \end{array} } \right\} = \left\{ {\begin{array}{*{20}c} {{\mathbf{F}}_{{\text{e,o}}} } \\ {{\mathbf{F}}_{{\text{e,s}}} } \\ \end{array} } \right\}} \\ {\begin{array}{*{20}c} \Rightarrow & {\left( {{\mathbf{D - CA}}^{ - 1} {\mathbf{B}}} \right)} \\ \end{array} {\mathbf{x}}_{{\text{s}}} + {\mathbf{CA}}^{ - 1} ({\mathbf{F}}_{{\text{e,o}}} - {\mathbf{F}}_{{\text{nl,o}}} ) - ({\mathbf{F}}_{{\text{e,s}}} - {\mathbf{F}}_{{\text{nl,s}}} ) = {\mathbf{0}}} \\ \end{array} $$
(48)

in which A, B, C and D are the static or dynamic stiffness matrix, x is the response vector. \({\mathbf{F}}_{{{\text{nl}}}}\) and \({\mathbf{F}}_{{{\text{nl}}}}\) are the nonlinear force vector and the excitation force vector, respectively. The subscripts o and s refer to the reduced DOFs and the retained DOFs, respectively. Substituting Eqs. (47) and (48) into (19), one can derive the reduced thermomechanical coupling equations:

$$ \begin{gathered} \left( {\left[ {\begin{array}{*{20}c} {{\mathbf{K}}_{{\mathbf{u}}}^{{{\mathbf{nl}}}} } & {{\mathbf{K}}_{{{\mathbf{u\uptheta }}}}^{{{\mathbf{nl}}}} } \\ {\mathbf{0}} & {{\mathbf{K}}_{{\mathbf{\uptheta }}}^{{{\mathbf{nl}}}} } \\ \end{array} } \right] - \left[ {\begin{array}{*{20}c} {{\mathbf{K}}_{{\mathbf{u}}}^{{{\mathbf{nll}}}} } & {{\mathbf{K}}_{{{\mathbf{u\uptheta }}}}^{{{\mathbf{nll}}}} } \\ {\mathbf{0}} & {{\mathbf{K}}_{{\mathbf{\uptheta }}}^{{{\mathbf{nll}}}} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {{\mathbf{K}}_{{\mathbf{u}}}^{{\mathbf{l}}} } & {{\mathbf{K}}_{{{\mathbf{u\uptheta }}}}^{{\mathbf{l}}} } \\ {\mathbf{0}} & {{\mathbf{K}}_{{\mathbf{\uptheta }}}^{{\mathbf{l}}} } \\ \end{array} } \right]^{{ - {\mathbf{1}}}} \left[ {\begin{array}{*{20}c} {{\mathbf{K}}_{{\mathbf{u}}}^{{{\mathbf{lnl}}}} } & {{\mathbf{K}}_{{{\mathbf{u\uptheta }}}}^{{{\mathbf{lnl}}}} } \\ {\mathbf{0}} & {{\mathbf{K}}_{{\mathbf{\uptheta }}}^{{{\mathbf{lnl}}}} } \\ \end{array} } \right]} \right)\left\{ {\begin{array}{*{20}c} {{\mathbf{U}}_{{{\mathbf{nl}}}}^{{\mathbf{0}}} } \\ {{\mathbf{\uptheta }}_{{{\mathbf{nl}}}} } \\ \end{array} } \right\} \hfill \\ \quad \quad \quad \quad \quad \quad \quad + \left[ {\begin{array}{*{20}c} {{\mathbf{K}}_{{\mathbf{u}}}^{{{\mathbf{nll}}}} } & {{\mathbf{K}}_{{{\mathbf{u\uptheta }}}}^{{{\mathbf{nll}}}} } \\ {\mathbf{0}} & {{\mathbf{K}}_{{\mathbf{\uptheta }}}^{{{\mathbf{nll}}}} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {{\mathbf{K}}_{{\mathbf{u}}}^{{\mathbf{l}}} } & {{\mathbf{K}}_{{{\mathbf{u\uptheta }}}}^{{\mathbf{l}}} } \\ {\mathbf{0}} & {{\mathbf{K}}_{{\mathbf{\uptheta }}}^{{\mathbf{l}}} } \\ \end{array} } \right]^{{ - {\mathbf{1}}}} \left\{ {\begin{array}{*{20}c} {{\mathbf{F}}_{{\mathbf{l}}}^{{\mathbf{0}}} } \\ {\mathbf{0}} \\ \end{array} } \right\}{\mathbf{ = }}\left\{ {\begin{array}{*{20}c} { - {\mathbf{F}}_{{{\mathbf{nl}}}}^{{\mathbf{0}}} } \\ {{\mathbf{q}}_{{{\mathbf{nl}}}} } \\ \end{array} } \right\} \hfill \\ \end{gathered} $$
(49)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Q., Fan, Y., Wu, Y. et al. A harmonic balance-based method to predict nonlinear forced response and temperature rise of dry friction systems including frictional heat transfer. Nonlinear Dyn 111, 14263–14291 (2023). https://doi.org/10.1007/s11071-023-08607-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08607-3

Keywords

Navigation