Skip to main content
Log in

Dynamic analysis of spur gears system with dynamic force increment and velocity-dependent mesh stiffness

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The actual gear mesh process is dynamic and the driving speed is of a great significance for dynamic response, while its nonlinear effect in the evaluation of mesh stiffness has commonly ignored by many scholars. In this paper, a new nonlinear dynamic model for spur gear system considering dynamic force increment, together with the effect of velocity-dependent mesh stiffness, is developed to obtain the dynamic response. An original computational algorithm for calculating velocity-dependent mesh stiffness based on analytical-FEM framework is proposed, whose correction is verified by finite element method. The steady-state solution of the gear system is studied analytically by numerical simulations. Changes in the dynamic responses in the time/frequency domains using the driving speed as the control parameter are examined, and the nonlinear relationship between the driving speed and the time-varying mesh stiffness is demonstrated. Numerical results are presented to illustrate and quantify the influence of velocity-dependent mesh stiffness and dynamic force increment on the dynamic characteristics of the spur gear system. The results presented in this study demonstrate the reasonable accuracy of velocity-dependent mesh stiffness and provide a theoretical basis for the follow-up research and experiment in the field of spur gear system dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

Abbreviations

\(I_{{\text{p}}}\) :

Moment of inertia of pinion

\(I_{{\text{g}}}\) :

Moment of inertia of gear

\(T_{{\text{g}}}\) :

Drag torque of gear

\(m_{{\text{p}}}\) :

Mass of pinion

\(m_{{\text{g}}}\) :

Mass of gear

\(c_{{\text{p}}}^{x,y}\) :

Bearing damping of pinion

\(c_{{\text{g}}}^{x,y}\) :

Bearing damping of gear

\(c_{{\text{m}}}^{j}\) :

Mesh damping of jth pair of teeth

\(k_{{\text{p}}}^{x,y}\) :

Bearing damping of pinion

\(k_{{\text{g}}}^{x,y}\) :

Bearing damping of gear

\(k_{{\text{m}}}^{j}\) :

Mesh stiffness of jth pair of teeth

\(k_{{{\text{p}}q}}\) :

Single-tooth dynamic stiffness of pinion at qth mesh point

\(k_{{{\text{g}}q}}\) :

Single-tooth dynamic stiffness of gear at qth mesh point

\(k_{{\text{m}}}^{1}\) :

Mesh stiffness of single tooth

\(k_{{\text{m}}}^{2}\) :

Mesh stiffness of double tooth

\(R_{{{\text{bp}}}}\) :

Base radius of pinion

\(R_{{{\text{bg}}}}\) :

Base radius of gear

\(\dot{\theta }_{{\text{p}}}\) :

Excitation speed of pinion

\(\dot{\theta }_{{{\text{pm}}}}\) :

Average driving speed

\(\lambda_{{\text{p}}}^{i}\) :

Fluctuation amplitudes of driving speed

\(\varphi_{i}\) :

Phase of the ith harmonic

\(\omega_{{\text{p}}}\) :

Excitation frequency of pinion

\(F_{j}\) :

Mesh force

\(F_{{\text{m}}}^{j}\) :

Dynamic mesh force of jth pair of teeth

\(F_{{\text{m}}}^{\prime \prime j}\) :

Dynamic mesh force with time-varying distance of jth pair of teeth

\({\Delta }F_{{\text{m}}}^{j}\) :

Additional dynamic mesh force increment of jth pair of teeth

\({\Delta }F_{{{\text{m}}x}}^{j}\) :

\(x\)-Axis component of mesh force \(\Delta F_{{\text{m}}}^{j} \left( {\theta_{{\text{p}}} } \right)\)

\({\Delta }F_{{{\text{m}}y}}^{j}\) :

\(y\)-Axis component of mesh force \(\Delta F_{{\text{m}}}^{j} \left( {\theta_{{\text{p}}} } \right)\)

\(F_{{\text{f}}}^{j}\) :

Dynamic friction force of jth pair of teeth

\(\delta\) :

Dynamic transmission error

\(\mu\) :

Equivalent friction coefficient

\(d^{\prime }\) :

Time-varying center distance

\(d\) :

Reference center distance

\(s\) :

Dividing point for transition from single- to double-tooth pairs

\(v_{{\text{p}}}\) :

Speed of mesh force acting on pinion

\(v_{{\text{g}}}\) :

Speed of mesh force acting on gear

\(v_{{x{\text{q}}}}^{{\text{p}}}\) :

\(x\)-Axis component of \(v_{{\text{p}}}\) of the qth mesh node

\(v_{{y{\text{q}}}}^{{\text{p}}}\) :

\(y\)-Axis component of \(v_{{\text{p}}}\) of the qth mesh node

\(\vec{V}\) :

Relative speed of mesh point

\(\overrightarrow {{Q_{{\text{p}}} Q_{{\text{g}}} }}\) :

Common normal vector of mesh point

\(q\) :

Node number of the qth mesh point

\({\Delta }x_{2q - 1}\) :

Displacement value ai position \(2q - 1\) in \(\left\{ {X_{q} } \right\}\)

\({\Delta }x_{2q}\) :

Displacement value ai position \(2q\) in \(\left\{ {X_{q} } \right\}\)

\(\Delta x_{q}\) :

Displacement in \(x\) direction of the qth mesh node

\(\Delta y_{q}\) :

Displacement in \(y\) direction of the qth mesh node

\({\Delta }\alpha\) :

Transmission angle increment

\({\Delta }t_{q}\) :

Moving time interval of mesh force

\(\left\{ {X_{q} } \right\}\) :

Displacement matrix

\(\left\{ {\dot{X}_{q} } \right\}\) :

Derivative of \(\left\{ {X_{q} } \right\}\)

\(\left\{ {\ddot{X}_{q} } \right\}\) :

Derivative of \(\left\{ {\dot{X}_{q} } \right\}\)

\(\left\{ M \right\}\) :

Mass matrices of finite element model

\(\left\{ {M_{i}^{{\text{e}}} } \right\}_{{i,\,{\text{ext}}}}\) :

Element mass matrix with consistent dimensions

\(\left\{ K \right\}\) :

Stiffness matrices of finite element model

\(\left\{ {K_{i}^{{\text{e}}} } \right\}_{{i,\,{\text{ext}}}}\) :

Element stiffness matrix with consistent dimensions

\(\left\{ C \right\}\) :

Damping matrices of finite element model

\(\left\{ {F_{q} } \right\}\) :

External load matrix

\(M_{j}^{{{\text{r}},{\text{c}}}}\) :

Vectors of the overall mass matrix of the jth gear bore number

\(K_{j}^{{{\text{r}},{\text{c}}}}\) :

Vectors of the overall stiffness matrix of the jth gear bore number

\(N\) :

Total number of elements

\(n_{1}\) :

Total number of mesh nodes

\(n_{2}\) :

Total number of bore nodes

\(n_{3}\) :

Total number of nodes

\(\alpha\) :

Mass damping coefficient

\(\alpha^{\prime }\) :

Time-varying transmission angle

\(\beta\) :

Stiffness damping coefficient

\(\beta^{\prime }\) :

Deflection angle

\(\beta_{q}\) :

Mesh angle

VMS:

Velocity-dependent mesh stiffness

SMS:

Static mesh stiffness

OCA:

Original computational algorithm

PEM:

Potential energy method

FEM:

Finite element method

DTE:

Dynamic transmission error

References

  1. Li, S., Kahraman, A.: Influence of dynamic behaviour on elastohydrodynamic lubrication of spur gears. Inst. Mech. Eng. 225(8), 740–753 (2011)

    Article  Google Scholar 

  2. Pizzolante, F., Battarra, M., D’Elia, G., et al.: A rattle index formulation for single and multiple branch geartrains. Mech. Mach. Theory 158, 104246 (2021)

    Article  Google Scholar 

  3. Meng, Z., Shi, G., Wang, F.: Vibration response and fault characteristics analysis of gear based on time-varying mesh stiffness. Mech. Mach. Theory 148, 103786 (2020)

    Article  Google Scholar 

  4. Liu, F., Jiang, H., Liu, S., et al.: Dynamic behavior analysis of spur gears with constant & variable excitations considering sliding friction influence. J. Mech. Sci. Technol. 30(12), 5363–5370 (2016)

    Article  Google Scholar 

  5. Chen, Z., Shao, Y.: Dynamic simulation of spur gear with tooth root crack propagating along tooth width and crack depth. Eng. Fail. Anal. 18(8), 2149–2164 (2011)

    Article  Google Scholar 

  6. Ma, H., Song, R., Pang, X., et al.: Time-varying mesh stiffness calculation of cracked spur gears. Eng. Fail. Anal. 44, 179–194 (2014)

    Article  Google Scholar 

  7. Jiang, H., Liu, F.: Analytical models of mesh stiffness for cracked spur gears considering gear body deflection and dynamic simulation. Meccanica 54(11), 1889–1909 (2019)

    Article  MathSciNet  Google Scholar 

  8. Oñate, E.: Structural analysis with the finite element method. Linear statics: volume 2: beams, plates and shells: Springer Science & Business Media (2013)

  9. Reddy, J.N.: Introduction to the finite element method. McGraw-Hill Education, (2019)

  10. Cooley, C.G., Liu, C., Dai, X., et al.: Gear tooth mesh stiffness: a comparison of calculation approaches. Mech. Mach. Theory 105, 540–553 (2016)

    Article  Google Scholar 

  11. Thirumurugan, R., Gnanasekar, N.: Influence of finite element model, load-sharing and load distribution on crack propagation path in spur gear drive. Eng. Fail. Anal. 110, 104383 (2020)

    Article  Google Scholar 

  12. Ma, H., Pang, X., Zeng, J., et al.: Effects of gear crack propagation paths on vibration responses of the perforated gear system. Mech. Syst. Signal Process. 62, 113–128 (2015)

    Article  Google Scholar 

  13. Vedmar, L., Henriksson, B.: A general approach for determining dynamic forces in spur gears. J. Mech. Des. 120(4), 593–598 (1998)

    Article  Google Scholar 

  14. Chen, K., Huangfu, Y., Ma, H., et al.: Calculation of mesh stiffness of spur gears considering complex foundation types and crack propagation paths. Mech. Syst. Signal Process. 130, 273–292 (2019)

    Article  Google Scholar 

  15. Beinstingel, A., Keller, M., Heider, M., et al.: A hybrid analytical-numerical method based on Isogeometric analysis for determination of time varying gear mesh stiffness. Mech. Mach. Theory 160, 104291 (2021)

    Article  Google Scholar 

  16. Yu, X., Sun, Y., Li, H., et al.: An improved meshing stiffness calculation algorithm for gear pair involving fractal contact stiffness based on dynamic contact force. Eur. J. Mech. A/Solids. 94, 104595 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  17. Xie, C., Yu, W.: Gear dynamic modelling based on the concept of dynamic mesh stiffness: theoretical study and experimental verification. J. Mech. Sci. Technol. 36(10), 4953–4965 (2022)

    Article  Google Scholar 

  18. Li, H., Chen, S., Tang, J., et al.: Nonlinear dynamic modeling and analysis of spur gear based on gear compatibility conditions. Mech. Mach. Theory 171, 104767 (2022)

    Article  Google Scholar 

  19. Zheng, X., Luo, W., Hu, Y., et al.: Analytical approach to mesh stiffness modeling of high-speed spur gears. Int. J. Mech. Sci. 224, 107318 (2022)

    Article  Google Scholar 

  20. Zheng, X., Luo, W., Hu, Y., et al.: Study on the mesh stiffness and nonlinear dynamics accounting for centrifugal effect of high-speed spur gears. Mech. Mach. Theory 170, 104686 (2022)

    Article  Google Scholar 

  21. Xue, S., Howard, I., Wang, C., et al.: Dynamic modelling of the gear system under non-stationary conditions using the iterative convergence of the tooth mesh stiffness. Eng. Fail. Anal. 131, 105908 (2022)

    Article  Google Scholar 

  22. Guan, X., Tang, J., Hu, Z., et al.: A new dynamic model of light-weight spur gear transmission system considering the elasticity of the shaft and gear body. Mech. Mach. Theory 170, 104689 (2022)

    Article  Google Scholar 

  23. Özgüven, H.N., Houser, D.R.: Mathematical models used in gear dynamics—a review. J. Sound Vib. 121(3), 383–411 (1988)

    Article  Google Scholar 

  24. Wang, J., Li, R., Peng, X.: Survey of nonlinear vibration of gear transmission systems. Appl. Mech. Rev. 56(3), 309–329 (2003)

    Article  Google Scholar 

  25. Kahraman, A., Singh, R.: Interactions between time-varying mesh stiffness and clearance non-linearities in a geared system. J. Sound Vib. 146(1), 135–156 (1991)

    Article  Google Scholar 

  26. Amabili, M., Rivola, A.: Dynamic analysis of spur gear pairs: steady-state response and stability of the SDOF model with time-varying meshing damping. Mech. Syst. Signal Process. 11(3), 375–390 (1997)

    Article  Google Scholar 

  27. Mohammed, O.D., Rantatalo, M., Aidanpää, J.-O.: Dynamic modelling of a one-stage spur gear system and vibration-based tooth crack detection analysis. Mech. Syst. Signal Process. 54, 293–305 (2015)

    Article  Google Scholar 

  28. Jia, S., Howard, I.: Comparison of localised spalling and crack damage from dynamic modelling of spur gear vibrations. Mech. Syst. Signal Process. 20(2), 332–349 (2006)

    Article  Google Scholar 

  29. Jiang, H., Liu, F.: Dynamic characteristics of helical gears incorporating the effects of coupled sliding friction. Meccanica 57(3), 523–539 (2022)

    Article  MathSciNet  Google Scholar 

  30. Siyu, C., Jinyuan, T., Caiwang, L., et al.: Nonlinear dynamic characteristics of geared rotor bearing systems with dynamic backlash and friction. Mech. Mach. Theory 46(4), 466–478 (2011)

    Article  MATH  Google Scholar 

  31. Yi, Y., Huang, K., Xiong, Y., et al.: Nonlinear dynamic modelling and analysis for a spur gear system with time-varying pressure angle and gear backlash. Mech. Syst. Signal Process. 132, 18–34 (2019)

    Article  Google Scholar 

  32. Sika, G., Velex, P.: Analytical and numerical dynamic analysis of gears in the presence of engine acyclism. J. Mech. Des. 130(12), 124502 (2008)

    Article  Google Scholar 

  33. Liu, F., Theodossiades, S., Bergman, L., et al.: Analytical characterization of damping in gear teeth dynamics under hydrodynamic conditions. Mech. Mach. Theory 94, 141–147 (2015)

    Article  Google Scholar 

  34. Yi, Y., Huang, K., Xiong, Y., et al.: Nonlinear dynamic modelling and analysis for a spur gear system with time-varying pressure angle and gear backlash. Mech. Syst. Signal Process. 132(1), 18–34 (2019)

    Article  Google Scholar 

  35. Wu, S.R., Gu, L.: Introduction to the Explicit Finite Element Method for Nonlinear Transient Dynamics. John Wiley and Sons (2012)

  36. Li, Z., Zhu, C., Liu, H., et al.: Mesh stiffness and nonlinear dynamic response of a spur gear pair considering tribo-dynamic effect. Mech. Mach. Theory 153, 103989 (2020)

    Article  Google Scholar 

  37. Wang, J., Yang, J., Lin, Y., et al.: Analytical investigation of profile shifts on the mesh stiffness and dynamic characteristics of spur gears. Mech. Mach. Theory 167, 104529 (2022)

    Article  Google Scholar 

  38. Zhang, R., Li, M., Gan, J.-Y., et al.: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos, Solitons Fractals 154, 111692 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, R., Li, M., Cherraf, A., et al.: The interference wave and the bright and dark soliton for two integro-differential equation by using BNNM. Nonlinear Dyn. 111(9), 8637–8646 (2023)

    Article  Google Scholar 

  40. Zhang, R., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 95, 3041–3048 (2019)

    Article  MATH  Google Scholar 

  41. Zhang, R., Li, M., Albishari, M., et al.: Generalized lump solutions, classical lump solutions and rogue waves of the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like equation. Appl. Math. Comput. 403, 126201 (2021)

    MathSciNet  MATH  Google Scholar 

  42. Liu, F., Zhang, L., Yu, X.: Stability investigation of velocity-modulated gear system using a new computational algorithm. Nonlinear Dyn. 89(2), 1111–1128 (2017)

    Article  Google Scholar 

  43. Liu, F., Zhang, L., Jiang, H., et al.: Nonlinear dynamic analysis of two external excitations for the gear system using an original computational algorithm. Mech. Syst. Signal Process. 144, 106823 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from National Natural Science Foundation of China (Grant No. 51305378, 51605412), Shandong Provincial Science and Technology Department (Grant No. ZR2021ME010), State Key Laboratory of Smart Manufacturing for Special Vehicles and Transmission System (Grant No. 2022FFQ0625), State Key Laboratory of Mechanical transmission in Chongqing University (Grant No. SKLMT-MSKFKT-202206).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuhao Liu.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Finite element theory of 8-node quadratic quadrilateral element

Appendix A: Finite element theory of 8-node quadratic quadrilateral element

The quadratic quadrilateral elements are used in the proposed method (see Fig. 20). The shape function of the quadratic quadrilateral element can be expressed as:

$$ N_{1} = \frac{1}{4}\left( {1 - \xi } \right)\left( {1 - \eta } \right)\left( { - \xi - \eta - 1} \right) $$
(A.1)
$$ N_{2} = \frac{1}{4}\left( {1 + \xi } \right)\left( {1 - \eta } \right)\left( {\xi - \eta - 1} \right) $$
(A.2)
$$ N_{3} = \frac{1}{4}\left( {1 + \xi } \right)\left( {1 + \eta } \right)\left( {\xi + \eta - 1} \right) $$
(A.3)
$$ N_{4} = \frac{1}{4}\left( {1 - \xi } \right)\left( {1 + \eta } \right)\left( { - \xi + \eta - 1} \right) $$
(A.4)
$$ N_{5} = \frac{1}{2}\left( {1 - \eta } \right)\left( {1 - \xi } \right)\left( {1 + \xi } \right) $$
(A.5)
$$ N_{6} = \frac{1}{2}\left( {1 + \eta } \right)\left( {1 + \xi } \right)\left( {1 - \xi } \right) $$
(A.6)
$$ N_{7} = \frac{1}{2}\left( {1 + \eta } \right)\left( {1 + \xi } \right)\left( {1 - \xi } \right) $$
(A.7)
$$ N_{8} = \frac{1}{2}\left( {1 + \eta } \right)\left( {1 - \eta } \right)\left( {1 - \xi } \right) $$
(A.8)
Fig. 20
figure 20

Schematic of quadratic quadrilateral

The strain matrix is:

$$ \left[ B \right] = \left[ {D^{\prime}} \right]\left[ N \right] $$
(A.9)

where \(\left\{{D}^{^{\prime}}\right\}\) and \(\left\{N\right\}\) are:

$$ \left\{ {D^{\prime}} \right\} = \frac{1}{\left| J \right|}\left\{ {\begin{array}{*{20}c} {\frac{\partial y}{{\partial \eta }}\frac{\partial ( \, )}{{\partial \xi }} - \frac{\partial y}{{\partial \xi }}\frac{\partial ( \, )}{{\partial \eta }}} & 0 \\ 0 & {\frac{\partial x}{{\partial \xi }}\frac{\partial ( \, )}{{\partial \eta }} - \frac{\partial x}{{\partial \eta }}\frac{\partial ( \, )}{{\partial \xi }}} \\ {\frac{\partial x}{{\partial \xi }}\frac{\partial ( \, )}{{\partial \eta }} - \frac{\partial x}{{\partial \eta }}\frac{\partial ( \, )}{{\partial \xi }}} & {\frac{\partial y}{{\partial \eta }}\frac{\partial ( \, )}{{\partial \xi }} - \frac{\partial y}{{\partial \xi }}\frac{\partial ( \, )}{{\partial \eta }}} \\ \end{array} } \right\} $$
(A.10)
$$ \left\{ N \right\} = \left\{ {\begin{array}{*{20}c} {N_{1} } & 0 & {N_{2} } & 0 & {N_{3} } & 0 & {N_{4} } & 0 & {N_{5} } & 0 & {N_{6} } & 0 & {N_{7} } & 0 & {N_{8} } & 0 \\ 0 & {N_{1} } & 0 & {N_{2} } & 0 & {N_{3} } & 0 & {N_{4} } & 0 & {N_{5} } & 0 & {N_{6} } & 0 & {N_{7} } & 0 & {N_{8} } \\ \end{array} } \right\} $$
(A.11)

where \(\left\{J\right\}\) is jacobin matrix:

$$ \left\{ J \right\} = \left\{ {\begin{array}{*{20}c} {\frac{\partial x}{{\partial \xi }}} & {\frac{\partial y}{{\partial \xi }}} \\ {\frac{\partial x}{{\partial \eta }}} & {\frac{\partial y}{{\partial \eta }}} \\ \end{array} } \right\} $$
(A.12)

The constitutive matrix is:

$$ \left\{ D \right\} = \frac{{\text{E}}}{{1 - \nu^{2} }}\left\{ {\begin{array}{*{20}c} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & {\frac{1 - \nu }{2}} \\ \end{array} } \right\} $$
(A.13)

where \(E\) represents the Young’s modulus and \(v\) represents the Poisson’s ratio.

The element stiffness and mass matrix can be acquired by Gauss integral:

$$ \left\{ {K^{{\text{e}}} } \right\}_{16 \times 16} = t\left| J \right|\int_{ - 1}^{1} {\int_{ - 1}^{1} {\left\{ B \right\}_{16 \times 3}^{T} \left\{ D \right\}_{3 \times 3} \left\{ B \right\}_{3 \times 16} {\text{d}}\xi {\text{d}}\eta } } $$
(A.14)
$$ \left\{ {M^{{\text{e}}} } \right\}_{16 \times 16} { = }\rho t\int_{ - 1}^{1} {\int_{ - 1}^{1} {\left\{ N \right\}_{16 \times 2}^{T} \left\{ N \right\}_{2 \times 16} {\text{d}}\xi {\text{d}}\eta } } $$
(A.15)

where \(t\) is element thickness; \(\rho \) is element density.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Liu, F., Ma, T. et al. Dynamic analysis of spur gears system with dynamic force increment and velocity-dependent mesh stiffness. Nonlinear Dyn 111, 13865–13887 (2023). https://doi.org/10.1007/s11071-023-08603-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08603-7

Keywords

Navigation