Skip to main content
Log in

Active fault tolerant control for polynomial nonlinear systems with asymmetric state constraints and measurement noise

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the problem of active fault tolerant control (AFTC) is studied for polynomial nonlinear systems subject to asymmetric state constraints and measurement noise. The AFTC scheme is composed of the fault detection and isolation unit and the fault tolerant control unit. By using polynomial filters, the fault detection (FD) module and the fault isolation (FI) module are designed to obtain the accurate estimations of states and faults in the presence of measurement noise. The FD is realized by the residual evaluation approach, while the FI is achieved through the residual matching method. When a fault is detected and isolated, the controller switches from a nominal controller (NC) to a reconfigured controller (RC). To ensure that the asymmetric state constraint is not violated, a universal barrier Lyapunov function is introduced in the design of the NC and the RC. Moreover, the boundedness of tracking errors and estimation errors is analysed. Finally, the effectiveness of the proposed AFTC method is verified by a simulation for a dynamic point-the-bit rotary steerable drilling tool system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

The simulation data that support the findings of this study are available within the article.

References

  1. Yang, H., Han, Q.L., Ge, X., Ding, L., Xu, Y., Jiang, B., Zhou, D.H.: Fault tolerant cooperative control of multi-agent systems: a survey of trends and methodologies. IEEE Trans. Ind. Inf. 16(1), 4–17 (2020)

    Article  Google Scholar 

  2. Ju, Y., Tian, X., Liu, H., Ma, L.: Fault detection of networked dynamical systems: a survey of trends and techniques. Int. J. Syst. Sci. 52(16), 3390–3409 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Guo, B., Dian, S., Zhao, T.: Event-driven-observer-based fuzzy fault-tolerant control for nonlinear system with actuator fault. Nonlinear Dyn. 107(4), 3505–3519 (2022)

    Article  Google Scholar 

  4. Zhang, Y., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control. 32(2), 229–252 (2008)

    Article  Google Scholar 

  5. Shen, Q., Yue, C., Goh, C.H., Wang, D.: Active fault-tolerant control system design for spacecraft attitude maneuvers with actuator saturation and faults. IEEE Trans. Ind. Electron. 66(5), 3763–3772 (2019)

    Article  Google Scholar 

  6. Wu, D., Song, J., Shen, Y., Ji, Z.: Active fault-tolerant linear parameter varying control for the pitch actuator of wind turbines. Nonlinear Dyn. 87(1), 475–487 (2017)

    Article  MATH  Google Scholar 

  7. Wang, X., Tan, C.P., Wang, Y., Zhang, Z.: Active fault tolerant control based on adaptive interval observer for uncertain systems with sensor faults. Int. J. Robust Nonlinear Control 31(8), 2857–2881 (2021)

    Article  MathSciNet  Google Scholar 

  8. Watanabe, A.T.Y., Leal, A.B., Cury, J.E.R., de Queiroz, M.H.: Combining online diagnosis and prognosis for safe controllability. IEEE Trans. Autom. Control 67(10), 5563–5569 (2022)

    Article  MathSciNet  Google Scholar 

  9. Zhang, X., Parisini, T., Polycarpou, M.M.: Adaptive fault-tolerant control of nonlinear uncertain systems: an information-based diagnostic approach. IEEE Trans. Autom. Control 49(8), 1259–1274 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Amin, A.A., Hasan, K.M.: A review of fault tolerant control systems: advancements and applications. Measurement 143, 58–68 (2019)

    Article  Google Scholar 

  11. Sabbghian-Bidgoli, F., Farrokhi, M.: Polynomial fuzzy observer-based integrated fault estimation and fault-tolerant control with uncertainty and disturbance. IEEE Trans. Fuzzy Syst. 30(3), 741–754 (2022)

    Article  Google Scholar 

  12. Roshanravan, S., Gendeshmin, B.S., Shamaghdari, S.: Design of an actuator fault-tolerant controller for an air vehicle with nonlinear dynamics. J. Aerosp. Eng. 233(10), 3534–3546 (2019)

    Google Scholar 

  13. Niu, Y., Sheng, L., Gao, M., Zhou, D.H.: Dynamic event-triggered state estimation for continuous-time polynomial nonlinear systems with external disturbances. IEEE Trans. Ind. Inf. 17(6), 3962–3970 (2021)

    Article  Google Scholar 

  14. Meng, A., Lam, H.K., Wang, Z., Liu, F.: Static output feedback fault tolerant control and relaxed stability analysis of positive polynomial fuzzy systems. IEEE Trans. Fuzzy Syst. 30(9), 3928–3939 (2022)

    Article  Google Scholar 

  15. Messaoudi, A., Gassara, H., Makni, S., El Hajjaji, A.: Design of polynomial observer-based fault-tolerant controller for polynomial systems with state delay: a sum of squares approach. Circuits Syst. Signal Process. 41(6), 3153–3171 (2022)

    Article  MATH  Google Scholar 

  16. Mendoza, J.A.B., Vazquez, F.D.J.S., Valdivia, C.H.G., Sanchez, R.O., Garcia, M.M.: Observer design for sensor and actuator fault estimation applied to polynomial LPV systems: a riderless bicycle study case. Int. J. Syst. Sci. 49(14), 2996–3006 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sabbghian-Bidgoli, F., Farrokhi, M.: Robust fuzzy observer-based fault-tolerant control: a homogeneous polynomial Lyapunov function approach. IET Control Theory Appl. (2022). https://doi.org/10.1049/cth2.12362

    Article  Google Scholar 

  18. Sheng, L., Wang, Y., Gao, M., Niu, Y., Zhou, D.H.: Finite-time \(H_\infty \) filtering for nonlinear stochastic systems with multiplicative noises via Carleman linearization technique. IEEE Trans. Aerosp. Electron. Syst. 59(2), 1774–1786 (2023)

    Google Scholar 

  19. Geng, H., Wang, Z., Cheng, Y., Alsaadi, F.E., Dobaie, A.M.: State estimation under non-Gaussian Levy and time-correlated additive sensor noises: a modified Tobit Kalman filtering approach. Signal Process. 154, 120–128 (2019)

    Article  Google Scholar 

  20. Mao, J., Sun, Y., Yi, X., Liu, H., Ding, D.: Recursive filtering of networked nonlinear systems: a survey. Int. J. Syst. Sci. 52(6), 1110–1128 (2021)

    Article  MathSciNet  Google Scholar 

  21. Jin, X.: Adaptive fixed-time control for MIMO nonlinear systems with asymmetric output constraints using universal barrier functions. IEEE Trans. Autom. Control 64(7), 3046–3053 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tee, K.P., Ge, S.S., Tay, E.H.: Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica 45, 918–927 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zou, M., Yu, J., Ma, Y., Zhao, L., Lin, C.: Command filtering-based adaptive fuzzy control for permanent magnet synchronous motors with full-state constraints. Inf. Sci. 518, 1–12 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, J., Yang, J., Zhang, Z., Wu, Y.: Output feedback control of nonlinear cascaded systems with external disturbance and asymmetric constraints. Nonlinear Dyn. 108(4), 3727–3743 (2022)

    Article  Google Scholar 

  25. Zhou, Z., Zhu, F., Xu, D., Guo, S., Zhao, Y.: Attack resilient control for vehicle platoon system with full states constraint under actuator faulty scenario. Appl. Math. Comput. 419, 126874 (2022)

    MathSciNet  MATH  Google Scholar 

  26. Wu, L.B., Park, J.H., Zhao, N.N.: Robust adaptive fault-tolerant tracking control for nonaffine stochastic nonlinear systems with full-state constraints. IEEE Trans. Cybern. 50(8), 3793–3805 (2020)

    Article  Google Scholar 

  27. Wang, X., Niu, B., Song, X., Zhao, P., Wang, Z.: Neural networks-based adaptive practical preassigned finite-time fault tolerant control for nonlinear time-varying delay systems with full state constraints. Int. J. Robust Nonlinear Control 31(5), 1497–1513 (2021)

    Article  MathSciNet  Google Scholar 

  28. Feng, Y., Zhou, M., Han, Q.L., Han, F., Cao, Z., Ding, S.: Integral-type sliding-mode control for a class of mechatronic systems with gain adaptation. IEEE Trans. Ind. Inf. 16(8), 5357–5368 (2020)

    Article  Google Scholar 

  29. Gao, M., Yang, S., Sheng, L., Zhou, D.H.: Fault diagnosis for time-varying systems with multiplicative noises over sensor networks subject to Round-Robin protocol. Neurocomputing 346, 65–72 (2019)

    Article  Google Scholar 

  30. Jiang, B., Staroswiecki, M., Cocquempot, V.: Fault accommodation for nonlinear dynamic systems. IEEE Trans. Autom. Control 51(9), 1578–1583 (2006)

  31. Yu, J., Shi, P., Dong, W., Yu, H.: Observer and command-filter-based adaptive fuzzy output feedback control of uncertain nonlinear systems. IEEE Trans. Ind. Electron. 62(9), 5962–5970 (2015)

    Article  Google Scholar 

  32. Prajna, S., Papachristodoulou, A., Wu, F.: Nonlinear control synthesis by sum of squares optimization: a Lyapunov-based approach. In: 5th Asian Control Conference, Melbourne, Australia, pp. 157–165 (2004)

  33. Sheng, L., Niu, Y., Wang, W., Gao, M., Geng, Y., Zhou, D.H.: Estimation of Toolface for dynamic point-the-bit rotary steerable systems via nonlinear polynomial filtering. IEEE Trans. Ind. Electron. 69(7), 7192–7201 (2022)

    Article  Google Scholar 

  34. Niu, Y., Sheng, L., Gao, M., Zhou, D.H.: Accelerometer fault detection for rotary steerable drilling tool systems under strong noises. IEEE Trans. Instrum. Meas. 71, 3523311 (2022)

    Article  Google Scholar 

  35. Wang, W., Tian, W., Wang, Z., Hua, W., Cheng, M.: A fault diagnosis method for current sensors of primary permanent-magnet linear motor drives. IEEE Trans. Power Electron. 36(2), 2334–2345 (2021)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under Grants 62073339, 62173343, 62033008, the Natural Science Foundation of Shandong Province of China under Grants ZR2020YQ49, ZR2022ZD34, and the Research Fund for the Taishan Scholar Project of Shandong Province of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Sheng.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Theorem 1

Proof

Letting \(\vartheta =[\xi ^T,{\bar{v}}^T,\xi ^T_y]^T\), it has

$$\begin{aligned} {\dot{V}}_e\le&e^T\bigg (P({\bar{A}}+H_g(\hat{{\bar{x}}})-L(\hat{{\bar{x}}})H_y(\hat{{\bar{x}}}))\nonumber \\ {}&\quad +({\bar{A}}+H_g(\hat{{\bar{x}}}) -L(\hat{{\bar{x}}})H_y(\hat{{\bar{x}}}))^TP\bigg )e\nonumber \\&\quad +2e^TP(\varTheta (\hat{{\bar{x}}})-{\bar{L}}(\hat{{\bar{x}}}){\tilde{G}}(\hat{{\bar{x}}}))\vartheta . \end{aligned}$$
(52)

Letting \({\bar{\vartheta }}=[e^T,\vartheta ^T]^T\), one has

$$\begin{aligned} {\dot{V}}_e&+\beta (\gamma _1e^Te-\gamma _2\vartheta ^T\vartheta )\le {\bar{\vartheta }}^T\varPi (\hat{{\bar{x}}}){\bar{\vartheta }}. \end{aligned}$$
(53)

Considering condition (10), it has

$$\begin{aligned} {\dot{V}}_e&\le -\beta \gamma _1e^Te+\beta \gamma _2\vartheta ^T\vartheta \le -p_eV_e+q_e. \end{aligned}$$
(54)

Moreover, for \(t\in [0,\infty )\), inequality (54) implies that

$$\begin{aligned}&V_e(t) \le \left( V_e(0)-\frac{q_e}{p_e}\right) \textrm{exp}(-p_et)+\frac{q_e}{p_e} \le V_e(0)\nonumber \\&\quad +\frac{q_e}{p_e}={\bar{q}}_e. \end{aligned}$$
(55)

By using (55), we know \(V_e=e^TPe\le {\bar{q}}_e\), then it is clear that e converges to \(\varOmega _e\). The proof is complete. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Gao, M., Sheng, L. et al. Active fault tolerant control for polynomial nonlinear systems with asymmetric state constraints and measurement noise. Nonlinear Dyn 111, 14157–14175 (2023). https://doi.org/10.1007/s11071-023-08601-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08601-9

Keywords

Navigation