Skip to main content
Log in

Disturbance observer-based finite-time coordinated control for spacecraft formation flying with event-triggered communication

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates a finite-time coordinated controller for spacecraft formation flying subject to external disturbances and limited communication resources. An event-triggered strategy is adopted to reduce the communication between disturbance observer and controller, between controller and actuator, and between neighboring spacecraft, simultaneously, which is more significant for coordinated control. To compensate for the external disturbances, a hyperbolic tangent function-based adaptive finite-time disturbance observer is established without the advanced knowledge of the upper bound of the derivative of the disturbance. The designed disturbance observer and controller are integrated through event-triggered strategy. The stabilities of the closed-loop system can be verified by the Lyapunov theorem without applying the separation principle. Simulation studies are provided to prove the effectiveness of the proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Xie, X., Sheng, T., He, L.: Robust attitude consensus control for multiple spacecraft systems with unknown disturbances via variable structure control and adaptive sliding mode control. Adv. Space Res. 69(3), 1588–1601 (2022)

    Article  Google Scholar 

  2. Xu C., Wu B., Wang.: Distributed prescribed-time attitude coordination for multiple spacecraft with actuator saturation under directed graph. IEEE Transactions on Aerospace and Electronic Systems. 58(4), 2660–2672(2022)

  3. Fraser, C., Ulrich, S.: Adaptive extended kalman filtering strategies for spacecraft formation relative navigation. Acta Astronaut. 178, 700–721 (2021)

    Article  Google Scholar 

  4. Li, D., Ma, G., Li, C., He, W., Mei, J., Ge, S.: Distributed attitude coordinated control of multiple spacecraft with attitude constraints. IEEE Trans. Aerosp. Electron. Syst. 54(5), 2233–2245 (2018)

    Article  Google Scholar 

  5. Guo, Z., Zuo, W., Li, S.: Global finite-time set stabilization of spacecraft attitude with disturbances using second-order sliding mode control. Nonlinear Dyn. 108(2), 1305–1318 (2022)

    Article  Google Scholar 

  6. Wang, T., Huang, J.: Time-varying formation control with attitude synchronization of multiple rigid body systems. Int. J. Robust Nonlinear Control 32(1), 181–204 (2022)

    Article  MathSciNet  Google Scholar 

  7. Wang, J., Hu, Y., Ji, W.: Barrier function-based adaptive integral sliding mode finite-time attitude control for rigid spacecraft. Nonlinear Dyn. 110(2), 1405–1420 (2022)

    Article  Google Scholar 

  8. Di, F., Li, A., Guo, Y., Wang, C., Wang, L.: Attitude tracking control for fractionated spacecraft with actuator failures under adaptive event-triggered strategy. Adv. Space Res. 70(5), 1209–1221 (2022)

    Article  Google Scholar 

  9. Yue, X., Xue, X., Wen, H., Yuan, J.: Adaptive control for attitude coordination of leader-following rigid spacecraft systems with inertia parameter uncertainties. Chin. J. Aeronaut. 32(3), 688–700 (2019)

    Article  Google Scholar 

  10. Cheng, X., Liu, Y., Qin, Y., Wang, F., Zhang, J.: Coordinated attitude control for flexible spacecraft formation with actuator configuration misalignment. Chin. J. Aeronaut. 34(3), 176–186 (2021)

    Article  Google Scholar 

  11. Cruz-Ortiz, D., Chairez, I., Poznyak, A.: Non-singular terminal sliding-mode control for a manipulator robot using a Barrier Lyapunov function. ISA Trans. 121, 268–283 (2022)

    Article  Google Scholar 

  12. Guo, Y., Huang, B., Song, S., Li, A., Wang, C.: Robust saturated finite-time attitude control for spacecraft using integral sliding mode. J. Guid. Control. Dyn. 42(2), 440–446 (2019)

    Article  Google Scholar 

  13. Doan Q., Le T., Tuan A.: Synchronization full-order terminal sliding mode control for an uncertain 3-DOF planar parallel robotic manipulator. Applied Sciences-Basel. 9(9), (2019)

  14. Shi, D., Zhang, J., Sun, Z., Xia, Y.: Adaptive sliding mode disturbance observer-based composite trajectory tracking control for robot manipulator with prescribed performance. Nonlinear Dyn. 109(4), 2693–2704 (2022)

    Article  Google Scholar 

  15. Zhou, L., Zhang, Y., Ma, L., Yang, C., Wang, G.: Disturbance-observer based antiwindup control for singularly perturbed switched systems. Int. J. Robust Nonlinear Control 31(14), 6845–6866 (2021)

    Article  MathSciNet  Google Scholar 

  16. Huang, J., Ri, S., Fukuda, T., Wang, Y.: A disturbance observer based sliding mode control for a class of underactuated robotic system with mismatched uncertainties. IEEE Trans. Autom. Control 64(6), 2480–2487 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cao, Q., Li, H., Jia, Q., Ma, C., Zhang, Y.: Multi-observer approach for tracking control of flexible spacecraft using exponential mapping of SE(3). Nonlinear Dyn. 111(6), 5329–5343 (2022)

    Article  Google Scholar 

  18. Sun, H., Li, S., Fei, S.: A composite control scheme for 6DOF spacecraft formation control. Acta Astronaut. 69(7–8), 595–611 (2011)

    Article  Google Scholar 

  19. Amrr, S.M., Nabi, M., Tiwari, P.M.: A fault-tolerant attitude tracking control of spacecraft using an anti-unwinding robust nonlinear disturbance observer. Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering. 233(16), 6005–6018 (2019)

    Article  Google Scholar 

  20. Yan R., Wu Z.: Finite-time attitude stabilization of flexible spacecrafts via reduced-order SMDO and NTSMC. Journal of Aerospace Engineering. 31(4), (2018)

  21. Peng, J., Xu, W., Yang, T., Hu, Z., Liang, B.: Dynamic modeling and trajectory tracking control method of segmented linkage cable-driven hyper-redundant robot. Nonlinear Dyn. 101(1), 233–253 (2020)

    Article  Google Scholar 

  22. Peng, J., Zhang, C., Ge, D., Han, Y.: Two trajectory tracking control methods for space hyper-redundant cable-driven robots considering model uncertainty. Multibody Sys.Dyn. 56(2), 123–152 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yu, Z., Zhang, W.: Almost sure consensus of stochastic nonlinear multi-agent systems via event-triggered control. Nonlinear Dyn. 111(4), 3469–3478 (2023)

    Article  Google Scholar 

  24. Sanchez, J., Louembet, C., Gavilan, F., Vazquez, R.: Event-based impulsive control for spacecraft rendezvous hovering phases. J. Guid. Control. Dyn. 44(10), 1794–1810 (2021)

    Article  Google Scholar 

  25. Li P., Wang S., Yang H., Zhao H.: Trajectory tracking and obstacle avoidance for wheeled mobile robots based on EMPC with an adaptive prediction horizon. IEEE Transactions on Cybernetics. (2021)

  26. Zhang, Y., Wang, D., Peng, Z., Liu, L., Wang, S.: Event-triggered control for containment maneuvering of second-order MIMO multi-agent systems with unmatched uncertainties and disturbances. Chin. J. Aeronaut. 33(11), 2959–2971 (2020)

    Article  Google Scholar 

  27. Wang, C., Guo, L., Wen, C., Hu, Q., Qiao, J.: Event-triggered adaptive attitude tracking control for spacecraft with unknown actuator faults. IEEE Trans. Industr. Electron. 67(3), 2241–2250 (2020)

    Article  Google Scholar 

  28. Xu, C., Wu, B., Cao, X., Zhang, Y.: Distributed adaptive event-triggered control for attitude synchronization of multiple spacecraft. Nonlinear Dyn. 95(4), 2625–2638 (2019)

    Article  MATH  Google Scholar 

  29. Zhu, C., Huang, B., Lu, Y., Li, X., Su, Y.: Distributed affine formation maneuver control of autonomous surface vehicles with event-triggered data transmission mechanism. IEEE Transactions on Control Systems Technology. (2022)

  30. Yi, H., Liu, M., Li, M.: Event-triggered fault tolerant control for spacecraft formation attitude synchronization with limited data communication. Eur. J. Control. 48, 97–103 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, X., Su, H.: Consensus of hybrid multi-agent systems by event-triggered/self-triggered strategy. Appl. Math. Comput. 359, 490–501 (2019)

    MathSciNet  MATH  Google Scholar 

  32. Di, F., Li, A., Guo, Y., Xie, C., Wang, C.: Event-triggered sliding mode attitude coordinated control for spacecraft formation flying system with disturbances. Acta Astronaut. 188, 121–129 (2021)

    Article  Google Scholar 

  33. Hu, Q., Shao, X.: Smooth finite-time fault-tolerant attitude tracking control for rigid spacecraft. Aerosp. Sci. Technol. 55, 144–157 (2016)

    Article  Google Scholar 

  34. Hu, Q., Li, B., Qi, J.: Disturbance observer based finite-time attitude control for rigid spacecraft under input saturation. Aerosp. Sci. Technol. 39, 13–21 (2014)

    Article  Google Scholar 

  35. Huang B., Song S., Zhu C., Li J., Zhou B.: Finite-time distributed formation control for multiple unmanned surface vehicles with input saturation. Ocean Engineering. 233, (2021)

  36. Lu, K., Xia, Y.: Adaptive attitude tracking control for rigid spacecraft with finite-time convergence. Automatica 49(12), 3591–3599 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This paper was supported by the National Natural Science Foundation of China (Grant No. 62273277), Key Research and Development Program of Shaanxi (Grant No. 2023-GHZD-32), and the Aeronautical Science Foundation of China (No. 201901053004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Guo.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di, F., Li, A., Guo, Y. et al. Disturbance observer-based finite-time coordinated control for spacecraft formation flying with event-triggered communication. Nonlinear Dyn 111, 14213–14230 (2023). https://doi.org/10.1007/s11071-023-08587-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08587-4

Keywords

Navigation