Skip to main content
Log in

Structure of parameter space of a three-species food chain model with immigration and emigration

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Migration is a natural behavior and an integral part of many species’ life cycles. Although most commonly found in many species of mammals and birds, it also occurs in several other species such as fish, insects, etc. Animals migrate in response to the spatial and temporal variability of environmental factors, such as food availability, habitat safety, climate, and mating opportunities. The present study investigates the role of middle predator’s migration (immigration and emigration) in the dynamics of a well-known tri-trophic food chain model. We perform extensive numerical simulations of this model system with simultaneous variation of migration and another system parameter related to the half-saturation constant of the middle predator, and present a collection of high-resolution isospike and Lyapunov exponent diagrams drawn in the biparametric space illustrating the intricate nature of the system dynamics. We mainly find that a moderate amount of migration (both immigration and emigration) promotes regularity in the dynamics of the system. High migration rates, however, lead to the extinction of one or more species from the system. The isospike diagrams uncover several periodic windows of different periodicity inside the chaotic region, some of them crossing one another. We demonstrate with the aid of phase portraits and basins of attraction that these overlappings induce bistability between coexisting attractors. We notice that these basins have a self-similar nature. Additionally, the system exhibits shrimp-shaped periodic structures, period-bubbling route to chaos, and multiple-times stability switching. We also include several animations related to stability switching and the basin of attraction for better visualization of the dynamics of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data (set of parameters) that supports the findings of this study are available within the article.

References

  1. Becks, L., Arndt, H.: Transitions from stable equilibria to chaos, and back, in an experimental food web. Ecology 89(11), 3222–3226 (2008). https://doi.org/10.1890/07-1988.1

    Article  Google Scholar 

  2. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 2: Numerical Application. Meccanica. International Journal of Theoretical and Applied Mechanics 15(1), 21–30 (1980). https://doi.org/10.1007/bf02128237

  3. Benincà, E., Huisman, J., Heerkloss, R., Jöhnk, K.D., Branco, P., Van Nes, E.H., Scheffer, M., Ellner, S.P.: Chaos in a long-term experiment with a Plankton community. Nature 451(7180), 822–825 (2008). https://doi.org/10.1038/nature06512

    Article  Google Scholar 

  4. Bonatto, C., Garreau, J.C., Gallas, J.A.C.: Self-similarities in the frequency-amplitude space of a loss-modulated CO\(_2\) laser. Phys. Rev. Lett. 95(14), 143905 (2005). https://doi.org/10.1103/PhysRevLett.95.143905

    Article  Google Scholar 

  5. Carcasses, J., Mira, C., Bosch, M., Simó, C., Tatjer, J.: “Crossroad area-spring area’’ transition (I) parameter plane representation. Int. J. Bifurcat. Chaos 1(01), 183–196 (1991). https://doi.org/10.1142/S0218127491000117

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurcat. Chaos 9, 1465–66 (1999). https://doi.org/10.1142/s0218127499001024

    Article  MathSciNet  MATH  Google Scholar 

  7. Chowdhury, T., Chakraborty, S., Chattopadhyay, J.: Migratory effect of middle predator in a tri-trophic food chain model. Math. Methods Appl. Sci. 33, 1699–1711 (2010). https://doi.org/10.1002/mma.1286

    Article  MathSciNet  MATH  Google Scholar 

  8. Costantino, R.F., Desharnais, R.A., Cushing, J.M., Dennis, B.: Chaotic dynamics in an insect population. Science 275(5298), 389–391 (1997). https://doi.org/10.1126/science.275.5298.389

    Article  MATH  Google Scholar 

  9. De Oliveira, J.A., Montero, L.T., Da Costa, D.R., Méndez-Bermúdez, J., Medrano-T, R.O., Leonel, E.D.: An investigation of the parameter space for a family of dissipative mappings. Chaos Interdiscipl. J. Nonlinear Sci. 29(5), 053114 (2019). https://doi.org/10.1063/1.5048513

    Article  MathSciNet  Google Scholar 

  10. Dingle, H., Drake, V.A.: What is migration? Bioscience 57(2), 113–121 (2007). https://doi.org/10.1641/B570206

    Article  Google Scholar 

  11. Dixon, A., Horth, S., Kindlmann, P.: Migration in insects: cost and strategies. J. Anim. Ecol. 62(1), 182–190 (1993). https://doi.org/10.2307/5492

    Article  Google Scholar 

  12. Drury, K.L.S., Suter, J.D., Rendall, J.B., Kramer, A.M., Drake, J.M.: Immigration can destabilize tri-trophic interactions: implications for conservation of top predators. Thyroid Res. 8(3), 285–296 (2015). https://doi.org/10.1007/s12080-014-0249-1

    Article  Google Scholar 

  13. El-Hamouly, H., Mira, C.: Lien entre les propriétés d’un endomorphisme de dimension un et celles d’un difféomorphisme de dimension deux. CR Acad. Sci. Paris Sér. I Math 293(10), 525–528 (1981)

  14. Fossi, J.T., Deli, V., Njitacke, Z.T., Mendimi, J.M., Kemwoue, F.F., Atangana, J.: Phase synchronization, extreme multistability and its control with selection of a desired pattern in hybrid coupled neurons via a memristive synapse. Nonlinear Dyn. 109(2), 925–942 (2022). https://doi.org/10.1007/s11071-022-07489-1

    Article  Google Scholar 

  15. Fraser, S., Kapral, R.: Analysis of flow hysteresis by a one-dimensional map. Phys. Rev. A 25(6), 3223 (1982). https://doi.org/10.1103/PhysRevA.25.3223

    Article  MathSciNet  Google Scholar 

  16. Freire, J.G., Gallas, J.A.C.: Non-Shilnikov cascades of spikes and hubs in a semiconductor laser with optoelectronic feedback. Phys. Rev. E 82(3), 037202 (2010). https://doi.org/10.1103/PhysRevE.82.037202

    Article  Google Scholar 

  17. Freire, J.G., Gallas, M.R., Gallas, J.A.C.: Impact of predator dormancy on prey-predator dynamics. Chaos Interdiscipl. J. Nonlinear Sci. 28(5), 053118 (2018). https://doi.org/10.1063/1.5016434

    Article  MathSciNet  MATH  Google Scholar 

  18. Gallas, J.A.C.: Structure of the parameter space of the Hénon map. Phys. Rev. Lett. 70(18), 2714–2717 (1993). https://doi.org/10.1103/physrevlett.70.2714

    Article  Google Scholar 

  19. Gallas, J.A.C.: Dissecting shrimps: results for some one-dimensional physical models. Physica A 202(1), 196–223 (1994). https://doi.org/10.1016/0378-4371(94)90174-0

    Article  MathSciNet  Google Scholar 

  20. Gliwicz, M.Z.: Predation and the evolution of vertical migration in zooplankton. Nature 320(6064), 746–748 (1986). https://doi.org/10.1038/320746a0

    Article  Google Scholar 

  21. Hastings, A., Powell, T.: Chaos in a three-species food chain. Ecology 72, 896–903 (1991). https://doi.org/10.2307/1940591

    Article  Google Scholar 

  22. Holt, R.D.: Immigration and the dynamics of peripheral populations. Adv Herpetol Evol. Biol. 680–694 (1983)

  23. Hossain, M., Pal, S., Tiwari, P.K., Pal, N.: Bifurcations, chaos, and multistability in a nonautonomous predator-prey model with fear. Chaos Interdiscipl. J. Nonlinear Sci. 31(12), 123134 (2021). https://doi.org/10.1063/5.0067046

    Article  MathSciNet  Google Scholar 

  24. Hossain, M., Kumbhakar, R., Pal, N.: Dynamics in the biparametric spaces of a three-species food chain model with vigilance. Chaos Solitons Fractals 162, 112438 (2022). https://doi.org/10.1016/j.chaos.2022.112438

    Article  MathSciNet  MATH  Google Scholar 

  25. Klapcsik, K., Varga, R., Heged Hus, F.: Bi-parametric topology of subharmonics of an asymmetric bubble oscillator at high dissipation rate. Nonlinear Dyn. 94(4), 2373–2389 (2018). https://doi.org/10.1007/s11071-018-4497-2

    Article  Google Scholar 

  26. Leutcho, G.D., Khalaf, A.J.M., Njitacke Tabekoueng, Z., Fozin, T.F., Kengne, J., Jafari, S., Hussain, I.: A new oscillator with mega-stability and its Hamilton energy: infinite coexisting hidden and self-excited attractors. Chaos Interdiscipl. J. Nonlinear Sci. 30(3) 033112 (2020). https://doi.org/10.1063/1.5142777

  27. Li, C., Chen, G., Kurths, J., Lei, T., Liu, Z.: Dynamic transport: from bifurcation to multistability. Commun. Nonlinear Sci. Numer. Simul. 95, 105600 (2021). https://doi.org/10.1016/j.cnsns.2020.105600

    Article  MathSciNet  MATH  Google Scholar 

  28. Maranhao, D.M., Baptista, M., Sartorelli, J.C., Caldas, I.L.: Experimental observation of a complex periodic window. Phys. Rev. E 77(3), 037202 (2008). https://doi.org/10.1103/PhysRevE.77.037202

    Article  Google Scholar 

  29. Matthiopoulos, J., Harwood, J., Thomas, L.E.N.: Metapopulation consequences of site fidelity for colonially breeding mammals and birds. J. Anim. Ecol. 74, 716–727 (2005). https://doi.org/10.1111/j.1365-2656.2005.00970.x

    Article  Google Scholar 

  30. McDonald, S.W., Grebogi, C., Ott, E., Yorke, J.A.: Fractal basin boundaries. Physica D 17(2), 125–153 (1985). https://doi.org/10.1016/0167-2789(85)90001-6

    Article  MathSciNet  MATH  Google Scholar 

  31. Menck, P.J., Heitzig, J., Marwan, N., Kurths, J.: How basin stability complements the linear-stability paradigm. Nat. Phys. 9(2), 89–92 (2013). https://doi.org/10.1038/nphys2516

    Article  Google Scholar 

  32. Milnor, J.: Remarks on iterated cubic maps. Exp. Math. 1(1), 5–24 (1992). https://doi.org/10.1080/10586458.1992.10504242

    Article  MathSciNet  MATH  Google Scholar 

  33. Mira, C.: Chaotic Dynamics. World Scientific (1987). https://doi.org/10.1142/0413

  34. Pal, N., Samanta, S., Rana, S.: The impact of constant immigration on a tri-trophic food chain model. Int. J. Appl. Comput. Math. 3(4), 3615–3644 (2017). https://doi.org/10.1007/s40819-017-0317-5

    Article  MathSciNet  MATH  Google Scholar 

  35. Panday, P., Pal, N., Samanta, S., Chattopadhyay, J.: Stability and bifurcation analysis of a three-species food chain model with fear. Int. J. Bifurc. Chaos 28(01), 1850009 (2018). https://doi.org/10.1142/s0218127418500098

    Article  MathSciNet  MATH  Google Scholar 

  36. Pisarchik, A.N., Feudel, U.: Control of multistability. Phys. Rep. 540(4), 167–218 (2014). https://doi.org/10.1016/j.physrep.2014.02.007

    Article  MathSciNet  MATH  Google Scholar 

  37. Rohani, P., Miramontes, O.: Immigration and the persistence of chaos in population models. J. Theor. Biol. 175, 203–206 (1995). https://doi.org/10.1006/jtbi.1995.0133

    Article  Google Scholar 

  38. Rössler, O.E., Letellier, C.: Chaos: The World of Nonperiodic Oscillations. Springer Nature, Switzerland (2020)

    Book  MATH  Google Scholar 

  39. Ruxton, G.D.: The effect of emigration and immigration on the dynamics of a discrete-generation population. J. Biosci. 20(3), 397–407 (1995). https://doi.org/10.1007/BF02703843

    Article  Google Scholar 

  40. Sahoo, B., Poria, S.: The chaos and control of a food chain model supplying additional food to top-predator. Chaos Solitons Fractals 58, 52–64 (2014). https://doi.org/10.1016/j.chaos.2013.11.008

    Article  MathSciNet  MATH  Google Scholar 

  41. Stankevich, N., Volkov, E.: Multistability in a three-dimensional oscillator: Tori, resonant cycles and chaos. Nonlinear Dyn. 94(4), 2455–2467 (2018). https://doi.org/10.1007/s11071-018-4502-9

    Article  Google Scholar 

  42. Stone, L.: Period-doubling reversals and chaos in simple ecological models. Nature 365, 617–620 (1993). https://doi.org/10.1038/365617a0

    Article  Google Scholar 

  43. Stone, L., Hart, D.: Effects of immigration on the dynamics of simple population models. Theor. Popul. Biol. 55, 227–234 (1999). https://doi.org/10.1006/tpbi.1998.1393

    Article  MATH  Google Scholar 

  44. Toker, D., Sommer, F.T., D’Esposito, M.: A simple method for detecting chaos in nature. Commun. Biol. 3(1), 1–13 (2020). https://doi.org/10.1038/s42003-019-0715-9

    Article  Google Scholar 

  45. Vitolo, R., Glendinning, P., Gallas, J.A.C.: Global structure of periodicity hubs in Lyapunov phase diagrams of dissipative flows. Phys. Rev. E 84(1), 016216 (2011). https://doi.org/10.1103/PhysRevE.84.016216

    Article  Google Scholar 

  46. Wang, N., Zhang, G., Kuznetsov, N.V., Bao, H.: Hidden attractors and multistability in a modified Chua’s circuit. Commun. Nonlinear Sci. Numer. Simul. 92, 105494 (2021). https://doi.org/10.1016/j.cnsns.2020.105494

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang, N., Zhang, G., Kuznetsov, N.V., Li, H.: Generating grid chaotic sea from system without equilibrium point. Commun. Nonlinear Sci. Numer. Simul. 107, 106194 (2022). https://doi.org/10.1016/j.cnsns.2021.106194

    Article  MathSciNet  MATH  Google Scholar 

  48. Zou, Y., Thiel, M., Romano, M.C., Kurths, J., Bi, Q.: Shrimp structure and associated dynamics in parametrically excited oscillators. Int. J. Bifurc. Chaos 16(12), 3567–3579 (2006). https://doi.org/10.1142/S0218127406016987

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are thankful to the honorable Editor and the anonymous reviewers for their valuable suggestions that improved the quality of the manuscript. Mainul Hossain is grateful to the Department of Science and Technology (DST), India, for providing financial support under the INSPIRE Fellowship program (IF-170522). Ruma Kumbhakar is thankful to the UGC, India, for providing financial support under the Junior Research Fellowship program (NTA Ref. No. 191620068570).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work. All authors are agreed on the final draft of the submission file.

Corresponding author

Correspondence to Nikhil Pal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (gif 5839 KB)

Supplementary file 2 (mp4 8154 KB)

Supplementary file 3 (gif 19259 KB)

Supplementary file 4 (mp4 3316 KB)

Supplementary file 5 (gif 13734 KB)

Supplementary file 6 (mp4 2166 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, M., Kumbhakar, R., Pal, N. et al. Structure of parameter space of a three-species food chain model with immigration and emigration. Nonlinear Dyn 111, 14565–14582 (2023). https://doi.org/10.1007/s11071-023-08573-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08573-w

Keywords

Navigation