Skip to main content
Log in

Nonlinear effects on the self-excited chatter oscillations in motorcycle dynamics, including tyre relaxation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Nonlinear effects on the stability of the motorcycle rear ‘chatter’ phenomenon are investigated by means of a minimal two degrees of freedom model, including tyre relaxation since this aspect has not been investigated in-depth in previous studies. Motorcycle ‘chatter’ manifests itself as a self-excited oscillation, which arises during braking in the frequency range between 17 and 22 Hz, affecting safety and performance. The study of the linearised system gives indications on the initiation of self-excited vibrations and thus helps to prevent them using proper design techniques. Post-bifurcation behaviour is analysed focusing on limit cycles and bifurcation diagrams, studied by means of specific applications of the harmonic balance method and Floquet theory. This allows the detection of the validity of the linear results, and to identify the meaningful parameters in limit cycle generation, their amplitude, and their stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

All data generated or analysed during this study, if not included in this published article, are available from the corresponding author on reasonable request.

References

  1. Cossalter, V., Lot, R., Massaro, M.: The chatter of racing motorcycles. Veh. Syst. Dyn. 46(4), 339–353 (2008)

    Article  Google Scholar 

  2. Sorrentino, S., Leonelli, L.: A study on the stability of a motorcycle wheel–swingarm suspension with chain transmission. Veh. Syst. Dyn. 55(11), 1707–1730 (2017)

    Article  Google Scholar 

  3. Schramm, A.E., Leonelli, L., Sorrentino, S.: Motorcycle driveline stability in a minimal model including roll angle during a braking maneuver. In: Proceedings of 27th International Symposium of Dynamics of Vehicles on Roads and Tracks (2021)

  4. Schramm, A.E., Leonelli, L., Sorrentino, S.: Driveline stability in racing motorcycles: analysis of a three degrees of freedom minimal model. J. Appl. Comput. Mech. (2022). https://doi.org/10.22055/jacm.2022.41157.3709

    Article  Google Scholar 

  5. Cattabriga, S., De Felice, A., Sorrentino, S.: Patter instability of racing motorcycles in straight braking manoeuvre. Veh. Syst. Dyn. 59(1), 33–55 (2021)

    Article  Google Scholar 

  6. Koenen, C.: The dynamic behavior of a motorcycle when running straight ahead and when cornering. Dissertation, TU, Delft (1983)

  7. Romualdi, L., Mancinelli, N., De Felice, A., Sorrentino, S.: A new application of the extended Kalman Filter to the estimation of roll angles of a motorcycle with Inertial Measurement Unit. FME Transactions 48(2), 255–265 (2020)

    Article  Google Scholar 

  8. de Vries, E., Pacejka, H.: Motorcycle tyre measurements and models. Veh. Syst. Dyn. 29(sup1), 280–298 (1998)

    Article  Google Scholar 

  9. Tezuka, Y., Kokubu, S., Shiomi, Y., Kiyota, S.: Vibration characteristics analysis in vehicle body vertical plane of motorcycle during turning. Honda R&D Tech. Rev. 16(1), 219–224 (2004)

    Google Scholar 

  10. Sharp, R.S., Watanabe, Y.: Chatter vibrations of high-performance motorcycles. Veh. Syst. Dyn. 51(3), 393–404 (2013)

    Article  Google Scholar 

  11. Catania, G., Leonelli, L., Mancinelli, N.: A multibody motorcycle model for the analysis and prediction of chatter vibrations. In: Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Vol. 13 (2013)

  12. Leonelli, L., Cattabriga, S., Sorrentino, S.: Driveline instability of racing motorcycles in straight braking manoeuvre. J. Mech. Eng. Sci. 232(17), 3045–3061 (2018)

    Article  Google Scholar 

  13. Schramm, A., Sorrentino, S., De Felice, A.: Nonlinear investigation into the motorcycle chatter phenomenon using numerical simulation. In: Proceedings of the 2021 JSAE Autumn Congress (Society of Automotive Engineers of Japan) (2021)

  14. Troger, H., Zeman, K.: A non-linear analysis of the generic types of loss of stability of the steady-state motion of a tractor semi-trailer. Veh. Syst. Dyn. 13, 161–172 (1984)

    Article  Google Scholar 

  15. Troger, H., Steindl, A.: Nonlinear Stability and Bifurcation Theory: An Introduction for Engineers and Applied Scientists. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  16. Hagedorn, P.: Self-excited vibrations in mechanical systems: old observations and new results. In: Proceedings of ENOC 2014 (2014)

  17. Lewis, A.P.: Approximations to limit cycles for a nonlinear multi-degree-of-freedom system with cubic nonlinearity through combining the harmonic balance with perturbation techniques. Int. J. Nonlinear Mech. 126, 103590 (2020)

    Article  Google Scholar 

  18. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  19. Gelb, A., Van der Velde, W.E.: Multiple-Input Describing Functions and Nonlinear System Design. Mc Graw-Hill, New York (1968)

    MATH  Google Scholar 

  20. Somieski, G.: An eigenvalue method for calculation of stability and limit cycles in nonlinear systems. Nonlinear Dyn. 26, 3–22 (2001)

    Article  MATH  Google Scholar 

  21. Lee, B.H.K., Liu, L., Chung, K.W.: Airfoil motion in subsonic flow with strong cubic nonlinear restoring forces. J. Sound Vib. 281, 699–717 (2005)

    Article  Google Scholar 

  22. Lewis, A.P.: Refined analytical approximations to limit cycles for non-linear multi-degree-of-freedom systems. Int. J. Non-Linear Mech. 110, 58–68 (2019)

    Article  Google Scholar 

  23. Pacejka, H.: Tire and Vehicle Dynamics. Elsevier, New York (2012)

    Google Scholar 

  24. MF Tyre/MF Swift 6.2 Equation manual, TNO (2013)

  25. Guiggiani, M.: The Science of Vehicle Dynamics, 2nd edn. Springer, Berlin (2018)

    Book  Google Scholar 

  26. Dahl, P.: A solid friction model, Technical Report TOR-0158(3107–18)-1, The Aerospace Corporation, El-Segundo (1968)

  27. Canudas de Wit, C., Olson, H., Åström, K.J., Lischinsky, P.: A new model for control of systems with friction. IEEE Trans. Autom. Control 40(3), 419–425 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tsiotras, P., Velenis, E., Sorine, M.: A LuGre tyre friction model with exact aggregate dynamics. Veh. Syst. Dyn. 42(3), 195–210 (2004)

    Article  Google Scholar 

  29. Piatkowski, T.: Dahl and LuGre dynamic friction models. The analysis of selected properties. Mech. Mach. Theory 73, 91–100 (2014)

    Article  Google Scholar 

  30. Kröger, M., Neubauer, M., Popp, K.: Experimental investigation on the avoidance of self-excited vibrations. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 366(1866), 785–810 (2008)

    Article  MATH  Google Scholar 

  31. Hayes, R., Marques, S.P.: Prediction of limit cycle oscillations under uncertainty using a Harmonic Balance method. Comput. Struct. 148, 1–13 (2015)

    Article  Google Scholar 

  32. Yakubovich, V.A., Starzhinskii, V.M.: Linear Differential Equations with Periodic Coefficients. Parts I and II. Wiley, New York (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio Sorrentino.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Nomenclature

α, α0

Swingarm rotation angle, and its stationary value

α s0

Preload angle of the equivalent rotational spring of the suspension, acting on the joint S

θ, θ0

Wheel rotation angle, and its stationary value

ω 0

Angular speed of rear sprocket (wheel), when in stationary conditions

ω p

Angular speed of front sprocket (pinion), always in stationary conditions

Ω

Angular frequency

H(Ω)

Frequency response function

φ

Phase delay

β p

Inclination angle of the line connecting the centre of pinion to the swingarm pivot

ψ

Chain angle between the taut (lower) branch and the swingarm direction

l sa

Swingarm length

z sa

Height of swingarm pivot with respect to the ground (positive)

l p

Offset distance of centre of pinion from the swingarm pivot

r p

Radius of front sprocket (pinion)

r c

Radius of rear sprocket (wheel)

d

Centre distance between the sprockets

l tc

Tangential distance between the sprockets

l c

Total dynamic length of the chain

l fc

Total free length of the chain

R r

Outer radius of the wheel

V x0

Constant travelling speed of the translating frame

V x

Actual longitudinal travelling speed of wheel centre

Vsx, Vsxr

Longitudinal slip velocity, and its value with relaxation

J α

Equivalent moment of inertia of swingarm and wheel about the axis of pivot S

J θ

Wheel moment of inertia (rim, tyre, and rear sprocket) about the axis of joint A

c s

Equivalent rotational damping coefficients of the suspension, acting on the joint S

k s

Equivalent rotational stiffness of the suspension, acting on the joint S

k z

Tyre vertical stiffness

k c

Chain stiffness

F c

Chain elastic force

M

Moment due to the chain elastic force, about the swingarm pivot

M

Moment due to the chain elastic force, about the wheel centre

Fz, Fz0

Normal ground force, and its stationary value

Fx, Fxr, Fx0

Longitudinal ground force, its value with relaxation and its stationary value

κ, κr, κ0

Longitudinal slip coefficient, its value with relaxation and its stationary value

λx, λx0

Relaxation length of the tyre, and its stationary value

K, K0

Tyre ground longitudinal stiffness, and its stationary value

u

Displacement of tyre ground contact point, in the Maxwell model

η F

Floquet multiplier

t

Time

T

Period of oscillation

Bx, Cx, Dx, Ex

MF semiempirical coefficients, depending on the working conditions of the tyre

F z0P

MF Tyre nominal load

pkx1

MF nominal tyre slip stiffness

pkx2

MF Variation of slip stiffness with load

pkx3

MF Exponent of slip stiffness with load

pcx1

MF shape factor

pdx1

MF nominal tyre friction

pdx2

MF Variation of friction with load

pex1

MF Nominal tyre force curvature

pex2

MF Variation of curvature with load

pex3

MF Quadratic variation of curvature with load

pcfx1

MF linear coefficient for tyre ground longitudinal stiffness K

pcfx2

MF quadratic coefficient for tyre ground longitudinal stiffness K

Cκ, Cκ0

Component with respect to slip κ of the tyre force Fx gradient, and its stationary value

CFz, CFz0

Component with respect to Fz of the tyre force Fx gradient, and its stationary value

C K

Derivative of K with respect to Fz

C Vsx

Partial derivative of Fx with respect to slip velocity Vsx

I

Identity matrix

C *

Equivalent damping matrix

K *

Equivalent stiffness matrix

Appendix B: Adopted values for the parameters

Model parameter

Value

Model parameter

Value

J α

8.56 kg m2

l sa

0.65 m

J θ

0.95 kg m2

r c

0.10 m

c s

420 Nms rad–1

r p

0.04 m

k s

8100 Nm rad–1

l p

0.10 m

k c

1.15 × 106 Nm–1

β p

0.40 rad

k z

1.70 × 105 Nm–1

R r

0.32 m

MF parameter

Value

MF parameter

Value

F z0P

1475 N

pdx1

1.28

pkx1

25.4

pdx2

–7.82 × 10–3

pkx2

1.10

pex1

0.47

pkx3

0.20

pex2

9.39 × 10–5

pcx1

1.77

pex3

6.62 × 10–2

Relax. parameter

Value

Relax. parameter

Value

λ x0

0.0387347 m

pcfx1

0.152

K 0

1.48 × 105 Nm–1

pcfx2

0.378

Input parameter

Value

Computed parameter

Value

F z0

− 400 N

F x0

–269 N

κ 0

− 0.035

ω 0

78.4 rad s–1

V x0

26 ms–1

ω p

196 rad s–1

α 0

0.20 rad

θ 0

7.43 × 10–3 rad

C κ0

6248.7 N

z sa

0.447 m

C Fz0

0.70918

α s0

0.243 rad

Appendix C: Nonlinear equations of motion

Nonlinear equations of motion expanded in Taylor series up to the third order, case without relaxation:

$$ \begin{aligned} \left\{ \begin{gathered} \ddot{\tilde{\alpha }} + f_{1} (\tilde{\alpha },\dot{\tilde{\alpha }},\tilde{\theta },\dot{\tilde{\theta }}) = 0 \hfill \\ \ddot{\tilde{\theta }} + f_{2} (\tilde{\alpha },\dot{\tilde{\alpha }},\tilde{\theta },\dot{\tilde{\theta }}) = 0 \hfill \\ \end{gathered} \right. \\ f_{j} (\tilde{\alpha },\dot{\tilde{\alpha }},\tilde{\theta },\dot{\tilde{\theta }}) & = a_{j - 1}^{(1)} \tilde{\alpha } + a_{j - 2}^{(1)} \dot{\tilde{\alpha }} + a_{j - 3}^{(1)} \tilde{\theta } + a_{j - 4}^{(1)} \dot{\tilde{\theta }} \\ & \quad + a_{j - 1}^{(2)} \tilde{\alpha }^{2} + a_{j - 2}^{(2)} \dot{\tilde{\alpha }}^{2} + a_{j - 3}^{(2)} \dot{\tilde{\theta }}^{2} \\ & \quad + a_{j - 4}^{(2)} \tilde{\alpha }\dot{\tilde{\alpha }} + a_{j - 5}^{(2)} \tilde{\alpha }\tilde{\theta } + a_{j - 6}^{(2)} \tilde{\alpha }\dot{\tilde{\theta }} + a_{j - 7}^{(2)} \dot{\tilde{\alpha }}\dot{\tilde{\theta }} \\ & \quad + a_{j - 1}^{(3)} \tilde{\alpha }^{3} + a_{j - 2}^{(3)} \dot{\tilde{\alpha }}^{3} + a_{j - 3}^{(3)} \dot{\tilde{\theta }}^{3} \\ & \quad + a_{j - 4}^{(3)} \tilde{\alpha }^{2} \dot{\tilde{\alpha }} + a_{j - 5}^{(3)} \tilde{\alpha }^{2} \tilde{\theta } + a_{j - 6}^{(3)} \tilde{\alpha }^{2} \dot{\tilde{\theta }} + a_{j - 7}^{(3)} \tilde{\alpha }\dot{\tilde{\alpha }}^{2} \\ & \quad + a_{j - 8}^{(3)} \dot{\tilde{\alpha }}^{2} \dot{\tilde{\theta }} + a_{j - 9}^{(3)} \tilde{\alpha }\dot{\tilde{\theta }}^{2} + a_{j - 10}^{(3)} \dot{\tilde{\alpha }}\dot{\tilde{\theta }}^{2} + a_{j - 11}^{(3)} \tilde{\alpha }\dot{\tilde{\alpha }}\dot{\tilde{\theta }} \\ \end{aligned} $$
(48)

First order coefficients of f1 and f2:

Term

f1

Value

f2

Value

Unit

\(\tilde{\alpha }\)

a(1)1–1

10,815.1

a(1)2–1

–17,110.4

s–2

\(\dot{\tilde{\alpha }}\)

a(1)1–2

49.5172

a(1)2–2

–10.0140

s–1

\(\tilde{\theta }\)

a(1)1–3

931.071

a(1)2–3

12,105.3

s–2

\(\dot{\tilde{\theta }}\)

a(1)1–4

–1.16021

a(1)2–4

25.7151

s–1

Second order coefficients of f1 and f2:

Term

f1

Value

f2

Value

Unit

\(\tilde{\alpha }^{2}\)

a(2)1–1

18,291.2

a(2)2–1

–313,868

s–2

\(\dot{\tilde{\alpha }}^{2}\)

a(2)1–2

–2.01941 × 10–2

a(2)2–2

0.447585

\(\dot{\tilde{\theta }}^{2}\)

a(2)1–3

–0.118365

a(2)2–3

2.62346

\(\tilde{\alpha }\dot{\tilde{\alpha }}\)

a(2)1–4

130.343

a(2)2–4

–2819.47

s–1

\(\tilde{\alpha }\tilde{\theta }\)

a(2)1–5

–1159.07

a(2)2–5

0

s–2

\(\tilde{\alpha }\dot{\tilde{\theta }}\)

a(2)1–6

–328.986

a(2)2–6

7113.25

s–1

\(\dot{\tilde{\alpha }}\dot{\tilde{\theta }}\)

a(2)1–7

9.79505 × 10–2

a(2)2–7

–2.17099

Third order coefficients of f1 and f2:

Term

f1

Value

f2

Value

Unit

\(\tilde{\alpha }^{3}\)

a(3)1–1

116,980

a(3)2–1

− 217,387

s–2

\(\dot{\tilde{\alpha }}^{3}\)

a(3)1–2

2.92983 × 10–5

a(3)2–2

6.49371 × 10–4

s

\(\dot{\tilde{\theta }}^{3}\)

a(3)1–3

2.71189 × 10–3

a(3)2–3

− 6.01067 × 10–2

s

\(\tilde{\alpha }^{2} \dot{\tilde{\alpha }}\)

a(3)1–4

2131.64

a(3)2–4

− 27,550.4

s–1

\(\tilde{\alpha }^{2} \tilde{\theta }\)

a(3)1–5

–41.7690

a(3)2–5

0

s–2

\(\tilde{\alpha }^{2} \dot{\tilde{\theta }}\)

a(3)1–6

–3851.49

a(3)2–6

35,668.8

s–1

\(\tilde{\alpha }\dot{\tilde{\alpha }}^{2}\)

a(3)1–7

–6.48427

a(3)2–7

140.613

\(\dot{\tilde{\alpha }}^{2} \dot{\tilde{\theta }}\)

a(3)1–8

2.89409 × 10–4

a(3)2–8

− 6.41451 × 10–3

s

\(\tilde{\alpha }\dot{\tilde{\theta }}^{2}\)

a(3)1–9

–37.2483

a(3)2–9

807.374

\(\dot{\tilde{\alpha }}\dot{\tilde{\theta }}^{2}\)

a(3)1–10

–1.9924 × 10–3

a(3)2–10

4.41608 × 10–2

s

\(\tilde{\alpha }\dot{\tilde{\alpha }}\dot{\tilde{\theta }}\)

a(3)1–11

31.1279

a(3)2–11

− 674.859

Nonlinear equations of motion expanded in Taylor series up to the third order, case with relaxation (semi-nonlinear model with λx0 = 0.0387347 m, as reported in Appendix B):

$$ \begin{aligned} \left\{ \begin{gathered} \ddot{\tilde{\alpha }} + g_{1} (\tilde{\alpha },\dot{\tilde{\alpha }},\tilde{\theta },\dot{\tilde{\theta }},\tilde{\kappa }_{r} ) = 0 \hfill \\ \ddot{\tilde{\theta }} + g_{2} (\tilde{\alpha },\dot{\tilde{\alpha }},\tilde{\theta },\dot{\tilde{\theta }},\tilde{\kappa }_{r} ) = 0 \hfill \\ \dot{\tilde{\kappa }}_{r} + g_{3} (\tilde{\alpha },\dot{\tilde{\alpha }},\tilde{\theta },\dot{\tilde{\theta }},\tilde{\kappa }_{r} ) = 0,\quad g_{3} = V_{x0} \lambda_{x0}^{ - 1} [\tilde{\kappa }_{r} - \tilde{\kappa }(\tilde{\alpha },\dot{\tilde{\alpha }},\dot{\tilde{\theta }})] \hfill \\ \end{gathered} \right. \\ g_{j} (\tilde{\alpha },\dot{\tilde{\alpha }},\tilde{\theta },\dot{\tilde{\theta }},\tilde{\kappa }_{r} ) & = b_{j - 1}^{(1)} \tilde{\alpha } + b_{j - 2}^{(1)} \dot{\tilde{\alpha }} + b_{j - 3}^{(1)} \tilde{\theta } + b_{j - 4}^{(1)} \dot{\tilde{\theta }} + b_{j - 5}^{(1)} \tilde{\kappa }_{r} \\ & \quad + b_{j - 1}^{(2)} \tilde{\alpha }^{2} + b_{j - 2}^{(2)} \dot{\tilde{\alpha }}^{2} + b_{j - 3}^{(2)} \tilde{\kappa }_{r}^{2} \\ & \quad + b_{j - 4}^{(2)} \tilde{\alpha }\dot{\tilde{\alpha }} + b_{j - 5}^{(2)} \tilde{\alpha }\tilde{\theta } + b_{j - 6}^{(2)} \dot{\tilde{\alpha }}\dot{\tilde{\theta }} + b_{j - 7}^{(2)} \tilde{\alpha }\tilde{\kappa }_{r} \\ & \quad + b_{j - 1}^{(3)} \tilde{\alpha }^{3} + b_{j - 2}^{(3)} \dot{\tilde{\alpha }}^{3} + b_{j - 3}^{(3)} \tilde{\kappa }_{r}^{3} \\ & \quad + b_{j - 4}^{(3)} \tilde{\alpha }^{2} \dot{\tilde{\alpha }} + b_{j - 5}^{(3)} \tilde{\alpha }^{2} \dot{\tilde{\theta }} + b_{j - 6}^{(3)} \tilde{\alpha }\dot{\tilde{\alpha }}^{2} + b_{j - 7}^{(3)} \dot{\tilde{\alpha }}^{2} \dot{\tilde{\theta }} \\ & \quad + b_{j - 8}^{(3)} \tilde{\alpha }\tilde{\kappa }_{r}^{2} + b_{j - 9}^{(3)} \tilde{\alpha }^{2} \tilde{\kappa }_{r} + b_{j - 10}^{(3)} \tilde{\alpha }\dot{\tilde{\alpha }}\dot{\tilde{\theta }} \\ \end{aligned} $$
(49)

First order coefficients of g1, g2 and g3:

Term

g1

Value

g2

Value

Unit

g3

Value

Unit

\(\tilde{\alpha }\)

b(1)1–1

10,815.1

b(1)2–1

− 17,110.4

s–2

b(1)3–1

0

s–1

\(\dot{\tilde{\alpha }}\)

b(1)1–2

49.5172

b(1)2–2

0

s–1

b(1)3–2

3.21715

\(\tilde{\theta }\)

b(1)1–3

931.071

b(1)2–3

12,105.3

s–2

b(1)3–3

0

s–1

\(\dot{\tilde{\theta }}\)

b(1)1–4

0

b(1)2–4

0

s–1

b(1)3–4

− 8.26132

\(\tilde{\kappa }_{r}\)

b(1)1–5

− 94.2671

b(1)2–5

2089.35

s–2

b(1)3–5

671.232

s–1

Second order coefficients of g1, g2 and g3:

Term

g1

Value

g2

Value

Unit

g3

Value

Unit

\(\tilde{\alpha }^{2}\)

b(2)1–1

18,291.2

b(2)2–1

–313,868

s–2

b(2)3–1

0

s–1

\(\dot{\tilde{\alpha }}^{2}\)

b(2)1–2

0

b(2)2–2

0

b(2)3–2

–1.59787 × 10–2

s

\(\tilde{\kappa }_{r}^{2}\)

b(2)1–3

–781.394

b(2)2–3

17,318.9

s–2

b(2)3–3

0

s–1

\(\tilde{\alpha }\dot{\tilde{\alpha }}\)

b(2)1–4

0

b(2)2–4

0

s–1

b(2)3–4

15.8707

\(\tilde{\alpha }\tilde{\theta }\)

b(2)1–5

–1159.07

b(2)2–5

0

s–2

b(2)3–5

0

s–1

\(\dot{\tilde{\alpha }}\dot{\tilde{\theta }}\)

b(2)1–6

0

b(2)2–6

0

b(2)3–6

4.10318 × 10–2

s

\(\tilde{\alpha }\tilde{\kappa }_{r}\)

b(2)1–7

–26,730.1

b(2)2–7

577,952

s–2

b(2)3–7

0

s–1

Third order coefficients of g1, g2 and g3:

Term

g1

Value

g2

Value

Unit

g3

Value

Unit

\(\tilde{\alpha }^{3}\)

b(3)1–1

116,980

b(3)2–1

–217,387

s–2

b(3)3–1

0

s–1

\(\dot{\tilde{\alpha }}^{3}\)

b(3)1–2

0

b(3)2–2

0

s

b(3)3–2

7.93620 × 10–5

s2

\(\tilde{\kappa }_{r}^{3}\)

b(3)1–3

1454.60

b(3)2–3

–32,239.9

s–2

b(3)3–3

0

s–1

\(\tilde{\alpha }^{2} \dot{\tilde{\alpha }}\)

b(3)1–4

0

b(3)2–4

0

s–1

b(3)3–4

− 1.60857

\(\tilde{\alpha }^{2} \tilde{\theta }\)

b(3)1–5

− 41.7690

b(3)2–5

0

s–2

b(3)3–5

0

s–1

\(\tilde{\alpha }\dot{\tilde{\alpha }}^{2}\)

b(3)1–6

0

b(3)2–6

0

b(3)3–6

− 0.157651

s

\(\dot{\tilde{\alpha }}^{2} \dot{\tilde{\theta }}\)

b(3)1–7

0

b(3)2–7

0

s

b(3)3–7

− 2.03794 × 10–4

s2

\(\tilde{\alpha }\tilde{\kappa }_{r}^{2}\)

b(3)1–8

− 245,897

b(3)2–8

5.32993 × 106

s–2

b(3)3–8

0

s–1

\(\tilde{\alpha }^{2} \tilde{\kappa }_{r}\)

b(3)1–9

− 312,933

b(3)2–9

2.89809 × 106

s–2

b(3)3–9

0

s–1

\(\tilde{\alpha }\dot{\tilde{\alpha }}\dot{\tilde{\theta }}\)

b(3)1–10

0

b(3)2–10

0

b(3)3–10

0.202416

s

Appendix D: Linearized model with relaxation

The equations of motion Eq. (6), coupled with the relaxation model Eq. (15) are analytically linearized as follows.

Linearized moments caused by the chain force in Eq. (5):

$$ \begin{aligned} \tilde{M}_{c\alpha } & = M_{c\alpha } - M_{c\alpha 0} \cong \left. {\frac{{\partial M_{c\alpha } }}{\partial \alpha }} \right|_{\,0} \tilde{\alpha } + \left. {\frac{{\partial M_{c\alpha } }}{\partial \theta }} \right|_{\,0} \tilde{\theta } \\ \tilde{M}_{c\theta } & = M_{c\theta } - M_{c\theta 0} \cong \left. {\frac{{\partial M_{c\theta } }}{\partial \alpha }} \right|_{\,0} \tilde{\alpha } + \left. {\frac{{\partial M_{c\theta } }}{\partial \theta }} \right|_{\,0} \tilde{\theta } \\ \end{aligned} $$
(50)

with coefficients:

$$ \begin{aligned} \left. {\frac{{\partial M_{c\alpha } }}{\partial \alpha }} \right|_{\,0} & \cong - k_{c} l_{sa}^{2} \sin^{2} \psi (\alpha_{0} ),\quad \left. {\frac{{\partial M_{c\alpha } }}{\partial \theta }} \right|_{\,0} = - k_{c} l_{sa} r_{c} \sin \psi (\alpha_{0} ), \\ \left. {\frac{{\partial M_{c\theta } }}{\partial \alpha }} \right|_{\,0} & = - k_{c} l_{sa} r_{c} \sin \psi (\alpha_{0} ),\quad \left. {\frac{{\partial M_{c\theta } }}{\partial \theta }} \right|_{\,0} = - k_{c} r_{c}^{2} \\ \end{aligned} $$
(51)

Linearized non-stationary components of the ground forces:

$$ \begin{aligned} \tilde{F}_{z} & = F_{z} - F_{z0} = - (k_{z} l_{sa} \cos \alpha_{0} )\tilde{\alpha }, \\ \tilde{F}_{x} & = F_{x} - F_{x0} = C_{\kappa 0} \tilde{\kappa }_{r} + C_{{F_{z0} }} \tilde{F}_{z} = C_{\kappa 0} \tilde{\kappa }_{r} - C_{{F_{z0} }} (k_{z} l_{sa} \cos \alpha_{0} )\tilde{\alpha } \\ \end{aligned} $$
(52)

Linearized equations of motion Eq. (6), considering the relaxation model described by Eqs. (15) and (23):

$$ \left\{ \begin{aligned}& J_{\alpha } {\ddot{\tilde{\alpha }}} + c_{s} {\dot{\tilde{\alpha }}} + c_{1\alpha } \tilde{\alpha } + c_{1\theta } \tilde{\theta } + c_{{1\kappa_{r} }} \tilde{\kappa }_{r} = 0 \hfill \\ &J_{\theta } {\ddot{\tilde{\theta }}} + c_{2\alpha } \tilde{\alpha } + c_{2\theta } \tilde{\theta } + c_{{2\kappa_{r} }} \tilde{\kappa }_{r} = 0 \end{aligned} \right. $$
(53)

with coefficients:

$$ \begin{aligned} c_{1\alpha } & = k_{s} + k_{c} l_{sa}^{2} \sin^{2} \psi (\alpha_{0} ) \\ & + k_{z} \\ & l_{sa}^{2} \cos \alpha_{0} (\cos \alpha_{0} + C_{{F_{z0} }} \sin \alpha_{0} ) - l_{sa} (F_{x0} \cos \alpha_{0} - F_{z0} \sin \alpha_{0} ) \\ c_{1\theta } & = k_{c} l_{sa} r_{c} \sin \psi (\alpha_{0} ) \\ c_{{1\kappa_{r} }} &= - C_{\kappa 0} l_{sa} \sin \alpha_{0} \\ c_{2\alpha } & = k_{c} l_{sa} r_{c} \sin \psi (\alpha_{0} )\\ & - C_{{F_{z0} }} k_{z} l_{sa} \cos \alpha_{0} (z_{sa} - l_{sa} \sin \alpha_{0} ) - F_{x0} l_{sa} \cos \alpha_{0} \\ c_{2\theta } & = k_{c} r_{c}^{2} \\ c_{{2\kappa_{r} }} & = C_{\kappa 0} (z_{sa} - l_{sa} \sin \alpha_{0} ) \\ \end{aligned} $$
(54)

Linearized relaxation equation Eq. (15), obtained after linearization of the slip coefficient κ in Eq. (1):

$$ \frac{{\lambda_{x0} }}{{V_{x0} }}\dot{\tilde{\kappa }}_{r} + \tilde{\kappa }_{r} = \tilde{\kappa } = \kappa - \kappa_{0} = - c_{{3\dot{\alpha }}} \dot{\tilde{\alpha }} + c_{{3\dot{\theta }}} \dot{\tilde{\theta }} $$
(55)

with coefficients:

$$ \begin{aligned} &c_{{3\dot{\alpha }}} = \frac{{R_{r} \omega_{0} l_{sa} \sin \alpha_{0} }}{{V_{x0}^{2} }} \\ & c_{{3\dot{\theta }}} = \frac{{R_{r} }}{{V_{x0} }} \end{aligned} $$
(56)

The linearized equations of motion with relaxation can the be expressed in state-space form, as in Sect. 2.2, Eqs. (24) and (25).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schramm, A.E., Sorrentino, S. & De Felice, A. Nonlinear effects on the self-excited chatter oscillations in motorcycle dynamics, including tyre relaxation. Nonlinear Dyn 111, 12671–12698 (2023). https://doi.org/10.1007/s11071-023-08571-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08571-y

Keywords

Navigation