Skip to main content
Log in

Control of oscillations by control of invariants in quasi-polynomial nonlinear systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

An approach to control of invariant sets of quasi-polynomial nonlinear systems in the presence and absence of bounded uncertainty (disturbances) in the model is proposed. The control strategy is based on introduction of an invariant functional for uncontrolled system and posing the control task as achieving the desired value of the invariant functional by means of control. The design is based on the reduction to the multispecies Lotka–Volterra system and employing the speed-gradient control method. Simulation results demonstrate reasonable control accuracy and the presence of the resonance-like behavior of the controlled system under disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availibility

All data included in this study are available from the corresponding author on reasonable request.

Notes

  1. Since the LV model is ecology motivated, although the LV model is used in the paper just as a special canonical form of quasi-polynomial systems, we use the term “ species” for denoting its state variables according to the tradition and for convenience.

References

  1. Fradkov, A.L., Pogromsky, AYu.: Introduction to Control of Oscillations and Chaos. World Scientific Publishers, Singapore (1998)

    Book  MATH  Google Scholar 

  2. Fradkov, A.L.: Swinging control of nonlinear oscillations. Int. J. Control 64(6), 1189–1202 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Astrom, K.J., Furuta, K.: Swing up a pendulum by energy control. Automatica 36(2), 287–295 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang, Y., Ge, S.S.: Augmented Hamiltonian formulation and energy-based control design of uncertain mechanical systems. IEEE Trans. Control Syst. Technol. 16(2), 202–213 (2008)

    Article  Google Scholar 

  5. Costa, S.N.J., Balthazar, J.M.: On an active control for a structurally nonlinear mechanical system, taking into account an energy pumping. J. Comput. Nonlinear Dyn. 4(3), 1–6 (2009)

    Google Scholar 

  6. Shiriaev, A.S., Freidovich, L.B., Spong, M.W.: Controlled invariants and trajectory planning for underactuated mechanical systems. IEEE Trans. Autom. Control 59(9), 2555–2561 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ouyang, H., Zhao, B., Zhang, G.: Swing reduction for double-pendulum three-dimensional overhead cranes using energy-analysis-based control method. Int. J. Robust Nonlinear Control 31(9), 4184–4202 (2021)

    Article  MathSciNet  Google Scholar 

  8. Magyar, A., Fodor, A.: Quasi-polynomial control of a synchronous generator. Hung. J. Ind. Chem. 41(1), 51–57 (2013)

    Google Scholar 

  9. Müller, S., Flamm, C., Stadler, P.F.: What makes a reaction network “chemical”? Journal of Cheminformatics 14, Art. number: 63 (2022)

  10. Fradkov, A.L.: Nonlinear adaptive control: regulation-tracking-oscillations. IFAC-PapersOnline 27(11), 385–390 (1994)

    Google Scholar 

  11. Shiriaev, A.S., Fradkov, A.L.: Stabilization of invariant sets for nonlinear systems with applications to control of oscillations. Int. J. Robust Nonlinear Control 11, 215–240 (2001)

    Article  MathSciNet  Google Scholar 

  12. Brenig, L., Goriely, A.: Universal canonical forms for the time-continuous dynamical systems. Phys. Rev. A 40, 4119–4122 (1989)

    Article  Google Scholar 

  13. Szederkényi, G., Magyar, A., Hangos, K.M.: Analysis and Control of Polynomial Dynamic Models with Biological Applications. Academic Press, New York (2018)

    MATH  Google Scholar 

  14. Motee, N., Bamieh, B., Khammash, M.: Stability analysis of quasi-polynomial dynamical systems with applications to biological network models. Automatica 48, 2945–2950 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Neukirchner, L., Magyar, A.: Quasi-polynomial representation based control of mechanical systems. Hung. J. Ind. Chem. 42(2), 91–95 (2014)

    Google Scholar 

  16. Hangos, K.M., Magyar, A., Szederk’enyi, G.: Entropy-inspired Lyapunov functions and linear first integrals for positive polynomial systems. Math. Model. Nat. Phenom. 10(3), 105–123 (2014)

    Article  MathSciNet  Google Scholar 

  17. Yablonsky, G., Branco, D., Guy, B., Marin, G.B., Constales, D.: New invariant expressions in chemical kinetics entropy 22(3), 373 (2020)

  18. Hernandez-Bermejo, B., Fairen, V.: Lotka-Volterra representation of general nonlinear system. Math. Biosci. 140(1), 1–32 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hernandez-Bermejo, B., Fairen, V.: Hamiltonian structure and Darboux theorem for families of generalized Lotka-Volterra systems. J. Math. Phys. 39, 6162–6174 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hernandez-Bermejo, B., Fairen, V.: Local stability and Lyapunov functionals for n-dimensional quasipolynomial conservative systems. J. Math. Anal. Appl. 256(1), 242–256 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lotka, A.J.: Elements of Mathematical Biology. Dover, New York (1956)

    MATH  Google Scholar 

  22. Szederkenyi, G., Hangos, K.M.: Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems. Phys. Let. A 324(5–6), 437–445 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Magyar, A., Szederkényi, G., Hangos, K.M.: Quasi-polynomial system representation for the analysis and control of nonlinear systems. IFAC-PapersOnline 38(1), 246–251 (2005)

    MATH  Google Scholar 

  24. Pchelkina, I.V., Fradkov, A.L.: Control of oscillatory behavior of multispecies populations. Ecol. Model. 227, 1–6 (2012)

    Article  Google Scholar 

  25. Fradkov, A.L., Pchelkina, I., Tomchin, A.: Control Of Invariants In Quasi-Polynomial Models, Prepr. ICMA19, Ponta Delgada, July 8–11, (2019)

  26. Magyar, A., Szederkényi, G., Hangos, K.M.: Globally stabilizing feedback control of process systems in generalized Lotka-Volterra form. J. Process Control 18(1), 80–91 (2008)

    Article  Google Scholar 

  27. Svirezhev, Y.M., Logofet, D.O.: Stability of Biological Communities. MIR Publishers, (1983)

  28. Fradkov, A.L.: Speed-gradient scheme and its application in adaptive control problems. Autom. Remote Control 40(9), 1333–1342 (1980)

    MathSciNet  MATH  Google Scholar 

  29. Andrievskii, B.R., Fradkov, A.L.: Speed gradient method and its applications. Autom. Remote Control 82(9), 1463–1518 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fradkov, A.L., Miroshnik, I.V., Nikiforov, V.O.: Nonlinear and Adaptive Control of Complex Systems. Kluwer Academic Publ, Dordrecht (1999)

    Book  MATH  Google Scholar 

  31. Chakrabarti, C.G., Koyel, G.: Non-equilibrium thermodynamics of ecosystems: entropic analysis of stability and diversity. Ecol. Model. 220(17), 1950–1956 (2009)

    Article  Google Scholar 

  32. Principles of Brain Dynamics: Global State Interactions. Eds. Mikhail, I. Rabinovich, Karl J. Friston, and Pablo Varona, (2012)

  33. Fradkov, A.L., Nikiforov, V.O., Andrievsky, B.R.: Adaptive observers for nonlinear nonpassifiable systems with application to signal transmission. Proc. IEEE Conf. Decis Control, 4, 4706–4711 (2002)

    Article  Google Scholar 

Download references

Funding

The work was performed in IPME RAS and supported by the Ministry of Science and Higher Education of the Russian Federation (Project No. 075-15-2021-573).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Fradkov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was performed in IPME RAS and supported by the Ministry of Science and Higher Education of the Russian Federation (Project No. 075-15-2021-573).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fradkov, A., Pchelkina, I., Ananyevskiy, M. et al. Control of oscillations by control of invariants in quasi-polynomial nonlinear systems. Nonlinear Dyn 111, 13955–13967 (2023). https://doi.org/10.1007/s11071-023-08566-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08566-9

Keywords

Navigation