Skip to main content
Log in

Two-dimensional localized modes in saturable quintic nonlinear lattices

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Stabilization of multidimensional solitons in self-focusing systems against the critical and supercritical collapse is a fundamental problem of nonlinear-wave dynamics in diverse physical media. One of solutions relies on the use of nonlinear lattices (NLs), i.e., spatially periodic modulation of the local strength of the nonlinearity. We demonstrate that NLs, which are built as square arrays of cylinders carrying the saturable quintic self-focusing nonlinearity, maintain the stability of several kinds of two-dimensional localized modes, including fundamental solitons, dipoles, triple-peak complexes, and off-site-centered vortices. This nonlinearity is a realistic model for the light propagation in the CS\(_{2}\) liquid, which is a medium used in many optical experiments. The stability of the modes is studied by means of the computation of eigenvalues for small perturbations and direct simulations of the perturbed evolution. The stability of all the localized modes complies with the Vakhitov–Kolokolov criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Kivshar, Y.S., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic, San Diego (2003)

    Google Scholar 

  2. Malomed, B.A., Mihalache, D., Wise, F., Torner, L.: Spatiotemporal optical solitons. J. Opt. B 7, R53–R72 (2005)

    Google Scholar 

  3. Mihalache, D.: Localized structures in optical and matter-wave media: a selection of recent studies. Rom. Rep. Phys. 73, 403 (2021)

    Google Scholar 

  4. Kevrekidis, P.G., Frantzeskakis, D.J., Carretero-González, R.: Emergent Nonlinear Phenomena in Bose-Einstein Condensates. Springer, Berlin (2008)

    MATH  Google Scholar 

  5. Kartashov, Y.V., Malomed, B.A., Torner, L.: Solitons in nonlinear lattices. Rev. Mod. Phys. 83, 247–305 (2011)

    Google Scholar 

  6. Kartashov, Y.V., Astrakharchik, G.E., Malomed, B.A., Torner, L.: Frontiers in multidimensional self-trapping of nonlinear fields and matter. Nat. Rev. Phys. 1, 185–197 (2019)

    Google Scholar 

  7. Malomed, B.A.: Multidimensional solitons: well-established results and novel findings. Eur. Phys. J. Spec. Top. 225, 2507–2532 (2016)

    Google Scholar 

  8. Mihalache, D.: Linear and nonlinear light bullets: recent theoretical and experimental studies. Rom. J. Phys. 57, 352–371 (2012)

    Google Scholar 

  9. Yang, J.: Nonlinear Waves in Integrable and Nonintegrable Systems. SIAM, Philadelphia (2010)

    MATH  Google Scholar 

  10. Boardman, A.D., Sukhorukov, A.P.: Soliton-Driven Photonics. Springer (2012)

    Google Scholar 

  11. Silberberg, Y.: Collapse of optical pulses. Opt. Lett. 15, 1282–1284 (1990)

    Google Scholar 

  12. McLeod, R., Wagner, K., Blair, S.: (3+1)-dimensional optical soliton dragging logic. Phys. Rev. A 52, 3254–3278 (1995)

    Google Scholar 

  13. Nguyen, J.H.V., Dyke, P., Luo, D., Malomed, B.A., Hulet, R.G.: Collisions of matter-wave solitons. Nat. Phys. 10, 918–922 (2014)

    Google Scholar 

  14. Chiao, R.Y., Garmire, E., Townes, C.H.: Self-trapping of optical beams. Phys. Rev. Lett. 13, 479–482 (1964)

    Google Scholar 

  15. Bergé, L.: Wave collapse in physics: principles and applications to light and plasma waves. Phys. Rep. 303, 259–370 (1998)

    MathSciNet  Google Scholar 

  16. Sulem, C., Sulem, P.: The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse. Springer, Berlin (2000)

    MATH  Google Scholar 

  17. Fibich, G.: The Nonlinear Schrödinger Equation: Singular Solutions and Optical Collapse. Springer, Dordrecht (2015)

    MATH  Google Scholar 

  18. Kruglov, V.I., Logvin, Y.A., Volkov, V.M.: The theory of spiral laser beams in nonlinear media. J. Mod. Opt. 39, 2277–2291 (1992)

    MathSciNet  MATH  Google Scholar 

  19. Assanto, G., Fratalocchi, A., Peccianti, M.: Spatial solitons in nematic liquid crystals: from bulk to discrete. Opt. Express 15, 5248–5259 (2007)

    Google Scholar 

  20. Lederer, F., Stegeman, G.I., Christodoulides, D.N., Assanto, G., Segev, M., Silberberg, Y.: Discrete solitons in optics. Phys. Rep. 463, 1–126 (2008)

    Google Scholar 

  21. Pitaevskii, L., Stringari, S.: Bose-Einstein Condensation. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  22. Pethick, C.J., Smith, H.: Bose-Einstein Condensate in Dilute Gas. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  23. Mihalache, D., Mazilu, D., Malomed, B.A., Lederer, F.: Vortex stability in nearly-two-dimensional Bose-Einstein condensates with attraction. Phys. Rev. A 73, 043615 (2006)

    Google Scholar 

  24. Zeng, L., Zeng, J.: Preventing critical collapse of higher-order solitons by tailoring unconventional optical diffraction and nonlinearities. Commun. Phys. 3, 26 (2020)

    Google Scholar 

  25. Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  26. Dal Negro, L., Boriskina, S.V.: Deterministic aperiodic nanostructures for photonics and plasmonics applications. Laser Photon. Rev. 6, 178–218 (2012)

    Google Scholar 

  27. Stoof, H.T.C., Gubbels, K.B., Dickerscheid, D.B.M.: Ultracold Quantum Fields. Springer, Dordrecht (2009)

    MATH  Google Scholar 

  28. Eiermann, B., Anker, T., Albiez, M., Taglieber, M., Treutlein, P., Marzlin, K.-P., Oberthaler, M.K.: Bright Bose-Einstein gap solitons of atoms with repulsive interaction. Phys. Rev. Lett. 92, 230401 (2004)

    Google Scholar 

  29. Morsch, O., Oberthaler, M.: Dynamics of Bose-Einstein condensates in optical lattices. Rev. Mod. Phys. 78, 179–215 (2006)

    Google Scholar 

  30. Pelinovsky, D.E.: Localization in Periodic Potential: From Schrödinger Operators to the Gross-Pitaevskii Equation. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  31. Brazhnyi, V.A., Konotop, V.V.: Theory of nonlinear matter waves in optical lattices. Mod. Phys. Lett. B 18, 627–651 (2004)

    MATH  Google Scholar 

  32. Baizakov, B.B., Malomed, B.A., Salerno, M.: Multidimensional solitons in a low-dimensional periodic potential. Phys. Rev. A 70, 053613 (2004)

    Google Scholar 

  33. Kartashov, Y.V., Vysloukh, V.A., Torner, L.: Soliton shape and mobility control in optical lattices. Prog. Opt. 52, 63–148 (2009)

    Google Scholar 

  34. Kartashov, Y.V., Malomed, B.A., Vysloukh, V.A., Torner, L.: Vector solitons in nonlinear lattices. Opt. Lett. 34, 3625–3627 (2009)

    Google Scholar 

  35. Zeng, L., Zeng, J.: One-dimensional solitons in fractional Schrödinger equation with a spatially periodical modulated nonlinearity: nonlinear lattice. Opt. Lett. 44, 2661–2664 (2019)

    Google Scholar 

  36. Zeng, L., Shi, J., Li, J., Li, J., Wang, Q.: Dark soliton families in quintic nonlinear lattices. Opt. Express 30, 42504–42511 (2022)

    Google Scholar 

  37. Sakaguchi, H., Malomed, B.A.: Solitons in combined linear and nonlinear lattice potentials. Phys. Rev. A 81, 013624 (2010)

    Google Scholar 

  38. Zeng, J., Malomed, B.A.: Two-dimensional solitons and vortices in media with incommensurate linear and nonlinear lattice potentials. Phys. Scr. T149, 014035 (2012)

    Google Scholar 

  39. Sakaguchi, H., Malomed, B.A.: Two-dimensional solitons in the Gross–Pitaevskii equation with spatially modulated nonlinearity. Phys. Rev. E 73, 026601 (2006)

    Google Scholar 

  40. Kartashov, Y.V., Malomed, B.A., Vysloukh, V.A., Torner, L.: Two-dimensional solitons in nonlinear lattices. Opt. Lett. 34, 770–772 (2009)

    Google Scholar 

  41. Sivan, Y., Fibich, G., Ilan, B., Weinstein, M.I.: Qualitative and quantitative analysis of stability and instability dynamics of positive lattice solitons. Phys. Rev. E 78, 046602 (2008)

    MathSciNet  Google Scholar 

  42. Mihalache, D., Mazilu, D., Crasovan, L.-C., Towers, I., Malomed, B.A., Buryak, A.V., Torner, L., Lederer, F.: Stable three-dimensional spinning optical solitons supported by competing quadratic and cubic nonlinearities. Phys. Rev. E 66, 016613 (2002)

    MathSciNet  Google Scholar 

  43. Astrakharchik, G.E., Malomed, B.A.: Dynamics of one-dimensional quantum droplets. Phys. Rev. A 98, 013631 (2018)

    Google Scholar 

  44. Zeng, L., Zhu, Y., Malomed, B.A., Mihalache, D., Wang, Q., Long, H., Cai, Y., Lu, X., Li, J.: Quadratic fractional solitons. Chaos Solitons Fract. 154, 111586 (2022)

    MathSciNet  MATH  Google Scholar 

  45. Malomed, B.A., Crasovan, L.-C., Mihalache, D.: Stability of vortex solitons in the cubic-quintic model. Physica D 161, 187–201 (2002)

    MathSciNet  MATH  Google Scholar 

  46. Hung, N.V., Trippenbach, M., Infeld, E., Malomed, B.A.: Spatial control of the competition between self-focusing and self-defocusing nonlinearities in one-and two-dimensional systems. Phys. Rev. A 90, 023841 (2014)

    Google Scholar 

  47. Zeng, L., Mihalache, D., Malomed, B.A., Lu, X., Cai, Y., Zhu, Q., Li, J.: Families of fundamental and multipole solitons in a cubic-quintic nonlinear lattice in fractional dimension. Chaos Solitons Fract. 144, 110589 (2021)

    MathSciNet  MATH  Google Scholar 

  48. Falcão-Filho, E.L., de Araújo, C.B., Boudebs, G., Leblond, H., Skarka, V.: Robust two-dimensional spatial solitons in liquid carbon disulfide. Phys. Rev. Lett. 110, 013901 (2013)

    Google Scholar 

  49. Reyna, A.S., Jorge, K.C., de Araújo, C.B.: Two-dimensional solitons in a quintic-septimal medium. Phys. Rev. A 90, 063835 (2014)

    Google Scholar 

  50. Tikhonenko, V., Christou, J., Luther-Daves, B.: Spiraling bright spatial solitons formed by the breakup of an optical vortex in a saturable self-focusing medium. J. Opt. Soc. Am. B 12, 2046–2052 (1995)

    Google Scholar 

  51. Duree, G.C., Shultz, J.L., Salamo, G.J., Segev, M., Yariv, A., Crosignani, B., Di Porto, P., Sharp, E.J., Neurgaonkar, R.R.: Observation of self-trapping of an optical beam due to the photorefractive effect. Phys. Rev. Lett. 71, 533–536 (1993)

    Google Scholar 

  52. Falcão-Filho, E.L., de Araújo, C.B., Boudebs, G., Leblond, H., Skarka, V.: Robust two-dimensional spatial solitons in liquid carbon disulfide. Phys. Rev. Lett. 110, 013901 (2013)

    Google Scholar 

  53. Reyna, A.S., de Araújo, C.B.: Nonlinearity management of photonic composites and observation of spatial-modulation instability due to quintic nonlinearity. Phys. Rev. A 89, 063803 (2014)

    Google Scholar 

  54. Zeng, L., Belić, M.R., Mihalache, D., Shi, J., Li, J., Li, S., Lu, X., Cai, Y., Li, J.: Families of gap solitons and their complexes in media with saturable nonlinearity and fractional diffraction. Nonlinear Dyn. 108, 1671–1680 (2022)

    Google Scholar 

  55. Reyna, A.S., Boudebs, G., Malomed, B.A., De Araújo, C.B.: Robust self-trapping of vortex beams in a saturable optical medium. Phys. Rev. A 93, 013840 (2016)

    Google Scholar 

  56. Fleischer, J.W., Bartal, G., Cohen, O., Segev, M., Hudock, J., Christodoulides, D.N.: Observation of vortex-ring “discrete’’ solitons in 2D photonic lattices. Phys. Rev. Lett. 92, 123904 (2004)

    Google Scholar 

  57. Adel, M., Aldwoah, K., Alharbi, F., Osman, M.S.: Dynamic properties of non-autonomous femtosecond waves modeled by the generalized derivative NLSE with variable coefficients. Curr. Comput. Aided Drug Des. 12, 1627 (2022)

    Google Scholar 

  58. Kartashov, Y.V., Vysloukh, V.A., Torner, L.: Two-dimensional cnoidal waves in Kerr-type saturable nonlinear media. Phys. Rev. E 68, 015603 (2003)

    Google Scholar 

  59. Shi, J., Zeng, J., Malomed, B.A.: Suppression of the critical collapse for one-dimensional solitons by saturable quintic nonlinear lattices. Chaos 28, 075501 (2018)

    MathSciNet  Google Scholar 

  60. Kartashov, Y.V., Egorov, A.A., Zelenina, A.S., Vysloukh, V.A., Torner, L.: Stabilization of one-dimensional periodic waves by saturation of the nonlinear response. Phys. Rev. E 68, 065605 (2003)

    Google Scholar 

  61. Borovkova, O.V., Kartashov, Y.V., Torner, L.: Stabilization of two-dimensional solitons in cubic-saturable nonlinear lattices. Phys. Rev. A 81, 063806 (2010)

    Google Scholar 

  62. Dong, L., Huang, C., Qi, W.: Symmetry breaking and restoration of symmetric solitons in partially parity-time-symmetric potentials. Nonlinear Dyn. 98, 1701–1708 (2019)

    MATH  Google Scholar 

  63. Dong, L., Kartashov, Y.V., Torner, L., Ferrando, A.: Vortex solitons in twisted circular waveguide arrays. Phys. Rev. Lett. 129, 123903 (2022)

  64. Chiofalo, M.L., Succi, S., Tosi, M.P.: Ground state of trapped interacting Bose-Einstein condensates by an explicit imaginary-time algorithm. Phys. Rev. E 62, 7438–7444 (2000)

  65. Malik, S., Hashemi, M.S., Kumar, S., Rezazadeh, H., Mahmoud, W., Osman, M.S.: Application of new Kudryashov method to various nonlinear partial differential equations. Opt. Quant. Electron. 55, 8 (2023)

    Google Scholar 

  66. Ismael, H.F., Sulaiman, T.A., Osman, M.S.: Multi-solutions with specific geometrical wave structures to a nonlinear evolution equation in the presence of the linear superposition principle. Commun. Theor. Phys. 75, 015001 (2023)

    MathSciNet  MATH  Google Scholar 

  67. Park, C., Nuruddeen, R.I., Ali, K.K., Muhammad, L., Osman, M.S., Baleanu, D.: Novel hyperbolic and exponential ansatz methods to the fractional fifth-order KortewegC̈de Vries equations. Adv. Differ. Equ. 2020, 627 (2020)

    MATH  Google Scholar 

  68. Osman, M.S., Rezazadeh, H., Eslami, M., Neirameh, A., Mirzazadeh, M.: Analytical study of solitons to Benjamin–Bona–Mahony-peregrine equation with power law nonlinearity by using three methods. UPB Sci. Bull. A 80, 267–278 (2018)

    MathSciNet  MATH  Google Scholar 

  69. Vakhitov, M., Kolokolov, A.: Stationary solutions of the wave equation in the medium with nonlinearity saturation. Radiophys. Quant. Electron. 16, 783–789 (1973)

    Google Scholar 

  70. Osman, M.S., Abdel-Gawad, H.I.: Multi-wave solutions of the (2+1)-dimensional Nizhnik–Novikov–Veselov equations with variable coefficients. Eur. Phys. J. Plus 130, 215 (2015)

    Google Scholar 

  71. Osman, M.S., Tariq, K.U., Bekir, A., Elmoasry, A., Elazab, N.S., Younis, M., Abdel-Aty, M.: Investigation of soliton solutions with different wave structures to the (2+1)-dimensional Heisenberg ferromagnetic spin chain equation. Commun. Theor. Phys. 72, 035002 (2020)

    MathSciNet  MATH  Google Scholar 

  72. Saliou, Y., Abbagari, S., Houwe, A., Yamigno, D.S., Crépin, K.T., Inc, M.: W-shape bright and several other solutions to the (3+1)-dimensional nonlinear evolution equations. Mod. Phys. Lett. B 35, 2150468 (2021)

    MathSciNet  Google Scholar 

Download references

Funding

National Natural Science Foundation of China (622 05224); Meizhou City Social Development Science and Technology Plan Project (2021B127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jincheng Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Zeng, L. & Chen, J. Two-dimensional localized modes in saturable quintic nonlinear lattices. Nonlinear Dyn 111, 13415–13424 (2023). https://doi.org/10.1007/s11071-023-08558-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08558-9

Keywords

Navigation