Skip to main content

Advertisement

Log in

A confidence ellipse analysis for stochastic dynamics model of Alzheimer's disease

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The Alzheimer’s disease (AD) is a neurodegenerative disease, which is caused by the aggregation of beta-amyloid peptide (\(A\beta\)) in the patient’s brain and the disorder of \({\text{Ca}}^{2 + }\) homeostasis in neurons. Caluwé and Dupont (Theor Biol 331:12–18, 2013) proposed a deterministic AD model to explore the effect of \({\text{Ca}}^{2 + }\) on AD. They demonstrated the positive feedback loop between \(A\beta\) and \({\text{Ca}}^{2 + }:\) and the occurrence of bistability. Based on their results, we further discuss the bistable behaviors. We present two periodically feasible drug strategies to alleviate the AD and screen out more effective one. In this paper, we also formulate a stochastic AD model, analyze the existence and uniqueness of global positive solutions and establish sufficient conditions for the existence of ergodic stationary distribution. Furthermore, the confidence ellipses describing the configurational arrangement of stochastic coexistence equilibria are constructed by stochastic sensitivity function technique, and tipping threshold is estimated as well. Noise-induced stochastic switching between two coexistence equilibria is observed in bistability region. Our results provide a new idea to control noise to alleviate AD through physical therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The manuscript has no associated data.

Notes

  1. PrPC proteins: Cellular prion proteins. \(A\beta \)-x-PrPC: PrPC binds to \(A\beta \) oligomer as a receptor to produce \(A\beta \)-x-PrPC complex.

References

  1. Caluwé, D.J., Dupont, G.: The progression towards Alzheimer’s disease described as a bistable switch arising from the positive loop between amyloids and Ca2+. J. Theor. Biol. 331, 12–18 (2013)

    MATH  Google Scholar 

  2. William, A., Markesbery, R.: Oxidative stress hypothesis in alzheimer’s disease. Free Radic. Biol. Med. 23(1), 134–147 (1997)

    Google Scholar 

  3. Ewen, S.T., Fauzi, A., Quan, T.Y., Chamyuang, S., Yin, A.: A review on advances of treatment modalities for Alzheimer’s disease. Life Sci. 276, 119129 (2021)

    Google Scholar 

  4. Reisberg, B., Ferris, S.H., De, L.M.J., Crook, T.: The global deterioration scale for assessment of primary degenerative dementia. Am. J. Psychiatry 139(9), 1136–1139 (1982)

    Google Scholar 

  5. Kang, Y.J., Diep, Y.N., Tran, M., Cho, H.: Therapeutic targeting strategies for early-to late-staged alzheimer’s disease. Int. J. Mol. Sci. 21(24), 1–34 (2020)

    Google Scholar 

  6. Zanetti, O., Solerte, S.B., Cantoni, F.: Life expectancy in Alzheimer’s disease (AD). Arch. Gerontol. Geriatr. 49, 237–243 (2009)

    Google Scholar 

  7. Hirtz, D.G., Thurman, D.J., Gwinn-Hardy, K., Mohamed, M., Zalutsky, R.: How common are the “common” neurologic disorders? Neurology 68(5), 326–337 (2007)

    Google Scholar 

  8. Wimo, A., Guerchet, M., Ali, G.C., Wu, Y.T., Matthew, A.: The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimer’s Dement. 13(1), 1–7 (2017)

    Google Scholar 

  9. Hu, J., Zhang, Q., Meyer-Aese, A., Ye, M.: Stationary distribution of a stochastic Alzheimer’s disease model. Math. Method. Appl. Sci. 43(17), 1–13 (2020)

    MathSciNet  Google Scholar 

  10. Sweeney, M.D., Kisler, K., Montagne, A., Toga, A.W., Zlokovic, B.V.: The role of brain vasculature in neurodegenerative disorders. Nat. Neurosci. 13, 18–31 (2018)

    Google Scholar 

  11. Ma, J.: Biophysical neurons, energy, and synapse controllability: a review. J. Zhejiang Univ. Sci. A 24(2), 109–129 (2023)

    Google Scholar 

  12. Li, H.X., Zhao, H.Y.: Mathematical model of Alzheimer’s disease with prion proteins interactions and treatment. Appl. Math. Comput. 433(15), 127377 (2022)

    MathSciNet  MATH  Google Scholar 

  13. Dayeh, M.A., Livadiotis, G., Elaydi, S.: A discrete mathematical model for the aggregation of β-amyloid. PLoS ONE 13(5), e0196402 (2018)

    Google Scholar 

  14. Hu, J., Zhang, Q.M., Meyer-Baese, A., Ye, M.: Stability in distribution for a stochastic Alzheimer’s disease model with reaction diffusion. Nonlinear Dyn. 108, 4243–4260 (2022)

    Google Scholar 

  15. Helal, M., Hingant, E., Pujo-Menjouet, L., Webb, G.F.: Alzheimer’s disease: analysis of a mathematical model incorporating the role of prions. J. Math. Biol. 69(5), 1207–1235 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Hao, W., Friedman, A.: Mathematical model on Alzheimer’s disease. BMC Syst. Biol. 10(1), 108 (2016)

    Google Scholar 

  17. Asili, E., Yarahmadian, S., Khani, H., Sharify, M.: A mathematical model for amyloid-β aggregation in the presence of metal ions: a timescale analysis for the progress of alzheimer disease. Bull. Math. Biol. 81(6), 108 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Angelo, D., Erene, M., Kayed, R., Milton, S.C., Ian, P., Charles, G.G.: Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J. Biol. Chem. 280(17), 17294–17300 (2005)

    Google Scholar 

  19. Kuchibhotla, K.V., Goldman, S.T., Lattarulo, C.R., Wu, H.Y., Hyman, B.T., Bacskai, B.J.: Aβ plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron 59(2), 214–225 (2008)

    Google Scholar 

  20. Berridge, M.: Calcium signalling and Alzheimer’s disease. Neurochem. Res. 36(7), 1149–1156 (2011)

    Google Scholar 

  21. Ho, M., Hoke, D.E., Chua, Y.J., Li, Q.X., Culvenor, J.G., Masters, C., et al.: Effect of metal chelators on r-secretsindicates that calcium and magnesium ions facilitate cleavage of Alzheimer amyloid precursor substrate. Int. J. Alzheimers Dis. 2011(6106), 950932 (2010)

    Google Scholar 

  22. Dighe, S.N., Mora, E., Chan, S., Kantham, S., Ross, B.P.: Rivastigmine and metabolite analogues with putative Alzheimer’s disease-modifying properties in a caenorhabditis elegans model. Commun. Chem. 2(1), 1–13 (2019)

    Google Scholar 

  23. Pierrot, N., Ghisdal, P., Caumont, A., Jean, N.O.: Intraneuronal amyloid-β1-42 production triggered by sustained increase of cytosolic calcium concentration induces neuronal death. J. Neurochem. 88(5), 1140–1150 (2004)

    Google Scholar 

  24. Eugene, S., Xue, W.F., Robert, P., Doumic, M.: Insights into the variability of nucleated amyloid polymerization by a minimalistic model of stochastic protein assembly. J. Chem. Phys. 144(17), 175101 (2016)

    Google Scholar 

  25. Theriault, P., Elali, A., Rivest, S.: The dynamics of monocytes and microglia in Alzheimer’s disease. Alzheimers Res. Ther. 7(1), 1–10 (2015)

    Google Scholar 

  26. Falcke, M.: Reading the patterns in living cells-the physics of Ca2+ signaling. Adv. Phys. 53(3), 255–440 (2004)

    Google Scholar 

  27. Bashkirtseva, I., Ryazanova, T., Ryashko, L.: Confidence domains in the analysis of noise-induced transition to chaos for goodwin model of business cycles. Int. J. Bifurc. Chaos 24(8), 1–10 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Xu, C.Q., Yuan, S.L., Zhang, T.H.: Stochastic sensitivity analysis for a competitive turbidostat model with inhibitory nutrients. Int. J. Bifurc. Chaos 26(10), 1650173 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Xu, C.Q., Yuan, S.L., Zhang, T.H.: Sensitivity analysis and feedback control of noise-induced extinction for competition chemostat model with mutualism. Phys. A 505, 891–902 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Zhao, S.N., Yuan, S.L., Zhang, T.H.: The impact of environmental fluctuations on a plankton model with toxin-producing phytoplankton and patchy agglomeration. Chaos Solitons Fractal 162, 112426 (2020)

    MathSciNet  Google Scholar 

  31. Alkhayuon, H., Tyson, R.C., Wieczorek, S.: Phase-sensitive tipping: how cyclic ecosystems respond to contemporary climate. Proc. R. Soc. A 477, 20210059 (2021)

    Google Scholar 

  32. Mattson, M.P., Bezprozvanny, I.: Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci. 31(9), 454–463 (2008)

    Google Scholar 

  33. Bojarski, L., Herms, J., Kuznicki, J.: Calcium dysregulation in Alzheimer’s disease. Neurochem. Int. 52(4), 621–633 (2008)

    Google Scholar 

  34. Berridge, M.: Calcium hypothesis of Alzheimer’s disease. Eur. J. Physiol. 459(3), 441–449 (2010)

    Google Scholar 

  35. Rosa, A., Olaso-Gonzalez, G., Arc-Chagnaud, C., Millan, F., Salvador-Pascual, A.: Physical exercise in the prevention and treatment of Alzheimer’s disease. J. Sport Health Sci. 9(5), 394–404 (2020)

    Google Scholar 

  36. Li, X.X., Qi, G.Q., Yu, C., Lian, G.M., Zheng, H., Wu, S.C., et al.: Cortical plasticity is correlated with cognitive improvement in Alzheimer’s disease patients after rTMS treatment. Brain Stimul. 14(3), 503–510 (2021)

    Google Scholar 

  37. Tatiaparti, K., Sau, S., Rauf, M.A., Iyer, A.K.: Smart treatment strategies for alleviating tauopathy and neuroinflammation to improve clinical outcome in Alzheimer’s disease. Drug Discov. Today 25(12), 2110–2129 (2020)

    Google Scholar 

  38. Wang, Y.H., Xu, X.Y., Zhu, Y.T., Wang, R.B.: Neural energy mechanism and neurodynamics of memory transformation. Nonlinear Dyn. 97(1), 697–714 (2019)

    MATH  Google Scholar 

  39. Sun, X.J., Si, H.: Population rate coding in recurrent neuronal networks consisting of neurons with mixed excitatory–inhibitory synapses. Nonlinear Dyn. 100, 2673–2686 (2020)

    Google Scholar 

  40. Fleming, V., Piro-Gambetti, B., Patrick, A., Zammi, M., Alexander, A.: Physical activity and cognitive and imaging biomarkers of Alzheimer’s disease in down syndrome. Neurobiol. Aging 107, 118–127 (2021)

    Google Scholar 

  41. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43(3), 525–546 (2001)

    MathSciNet  MATH  Google Scholar 

  42. Mao, X.: Stochastic Differential Equations and Applications, 2nd edn. Woodhead, Cambridge (2008)

    Google Scholar 

  43. Hasminskii, R.Z.: Stochastic Stability of Differential Equations. Springer, Berlin (1980)

    Google Scholar 

  44. Gard, T.: Introduction to Stochastic Differential Equations. Marcel Dekker Inc., New York (1988)

    MATH  Google Scholar 

  45. Strang, G.: Linear Algebra and Its Applications. Thomson Learning Inc., Chicago (1988)

    MATH  Google Scholar 

  46. Zhu, C., Yin, G.: Asymptotic properties of hybrid diffusion systems. SIAM J. Control Optim. 46, 1155–1179 (2007)

    MathSciNet  MATH  Google Scholar 

  47. Yuan, S., Wu, D., Lan, G., Wang, H.: Noise-induced transitions in a nonsmooth producer–grazer model with stoichiometric constraints. Bull. Math. Biol. 82(5), 55 (2020)

    MathSciNet  MATH  Google Scholar 

  48. Zhang, S.Q., Yuan, S.L., Zhang, T.H.: A predator-prey model with different response functions to juvenile and adult prey in deterministic and stochastic environments. Appl. Math. Comput. 413, 126598 (2022)

    MathSciNet  MATH  Google Scholar 

  49. Pallitto, M., Murphy, R.: A mathematical model of the kinetics of β-amyloid fibril growth from the denaturated state. Biophys. J. 81(3), 1805–1822 (2001)

    Google Scholar 

  50. Ortega, F., Stott, J., Visser, S., Bendtsen, C.: Interplay between α, β, and γ-secretases determines biphasic amyloid-β level in the presence of γ-secretases inhibitor. J. Biol. Chem. 288(2), 785–792 (2013)

    Google Scholar 

  51. Puri, I., Li, L.: Mathematical modeling for the pathogenesis of Alzheimer’s disease. PLoS ONE 5(12), e15176 (2010)

    Google Scholar 

  52. Murray, A., Faraoni, M., Castro, M., Alza, N., Cavallaro, V.: Natural AChE inhibitors from plants and their contribution to Alzheimer’s disease therapy. Curr. Neuropharmacol. 11(4), 388–413 (2013)

    Google Scholar 

  53. Rashid, T., Mithila, D., Safin, A., Ajit, G.: Advances on plant extracts and phytocompounds with acetylcholinesterase inhibition activity for possible treatment of Alzheimer’s disease. Phytomedicine Plus 2(1), 100184 (2021)

    Google Scholar 

  54. Srivastava, S., Ahmad, R., Khare, S.K.: Alzheimer’s disease and its treatment by different approaches: a review. Eur. J. Med. Chem. 216, 113320 (2021)

    Google Scholar 

  55. Zhang, H.Q., Zhao, Y.P., Yu, M., Zhao, Z.Q., Liu, P.X., Cheng, H., et al.: Reassembly of native components with donepezil to execute dual-missions in Alzheimer’s disease therapy. J. Control. Release 296, 14–28 (2019)

    Google Scholar 

  56. Assoc, A.: Alzheimer’s disease facts and figures. Alzheimers Dement. 14(3), 367–429 (2018)

    Google Scholar 

  57. Sperling, R.A., Aisen, P.S., Beckett, L.A.: Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7(3), 280–292 (2011)

    Google Scholar 

  58. Forsberg, A., Engler, H., Almkvist, O.: PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol. Aging 29(10), 1456–1465 (2008)

    Google Scholar 

  59. Palmqvist, S., Zetterberg, H., Mattsson, N.: Detailed comparison of amyloid PET and CSF biomarkers for identifying early Alzheimer disease. Neurology 85(14), 1240–1249 (2015)

    Google Scholar 

  60. Bigham, B., Zamanpour, S.A., Zare, H.: Features of the superficial white matter as biomarkers for the detection of Alzheimer’s disease and mild cognitive impairment: a diffusion tensor imaging study. Heliyon 8(1), e08725 (2022)

    Google Scholar 

  61. Owens, L.V., Benedetto, A., Dawson, N., Gaffney, C.J., Parkin, E.T.: Gene therapy-mediated enhancement of protective protein expression for the treatment of Alzheimer’s disease. Brain Res. 1753, 147264 (2021)

    Google Scholar 

  62. Achdou, Y., Franchi, B., Marcello, N., Tesi, M.C.: A qualitative model for aggregation and diffusion of β-amyloid in Alzheimer’s disease. J. Math. Biol. 67(6), 1369–1392 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are grateful to two anonymous reviewers and the editor for their helpful comments.

Funding

This work was supported by NSERC Individual Discovery Grant (No. RGPIN-2020-03911), NSERC Discovery Accelerator Supplement Award (No. RGPAS-2020-00090), NSFC-Yunnan United fund (No. U2102221). JZG is partially supported by a CSC Doctoral Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Zhang or Hao Wang.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

From the second equation of the deterministic system (i.e., \(\sigma_{1} = \sigma_{2} = 0\) in (2)), we have

$$ y = \frac{{V_{4} x + V_{2} }}{{k_{2} }}. $$
(A.1)

The bring (A.1) into the first equation of the deterministic system, we get a cubic equation in one variable with respect to \(x\)

$$ F(x) = T_{3} x^{3} + T_{2} x^{2} + T_{1} x + T_{0} = 0, $$
(A.2)

where

$$ \begin{aligned} T_{3} & = - k_{1} V_{4}^{2} , \\ T_{2} & = - 2V_{2} V_{4} k_{1} + V_{4}^{2} (V_{1} + V_{3} ), \\ T_{1} & = 2V_{2} V_{4} (V_{1} + V_{3} ) - \left( {V_{2}^{2} + k_{2}^{2} k_{3}^{2} } \right)k_{1} , \\ T_{0} & = V_{2}^{2} (V_{1} + V_{3} ) + V_{1} k_{2}^{2} k_{3}^{2} . \\ \end{aligned} $$

We assume that (A.2) has three positive equilibria, \(x_{1} ,x_{2}\) and \(x_{3}\) (\(x_{1} < x_{2} < x_{3}\)). \(F^{\prime } (x_{1} )\) is the derivative of \(F(x)\) at \(x_{i}\). We can easily get that \(F^{\prime } (x_{1} ) < 0\), \(F^{\prime } (x_{2} ) > 0\) and \(F^{\prime } (x_{3} ) < 0\). Next, we give the stability analysis of the equilibria.

Calculate the Jacobian matrix \(J(E_{i} )\) of the deterministic system at internal equilibrium \(E_{i} (x_{i} ,y_{i} )\)

$$ J(E_{i} ) = \left( {\begin{array}{*{20}c} { - k_{1} } & {\frac{{2V_{3} k_{3}^{2} y_{i} }}{{\left( {k_{3}^{2} + y_{i}^{2} } \right)^{2} }}} \\ {\frac{{V_{4} }}{\varepsilon }} & { - \frac{{k_{2} }}{\varepsilon }} \\ \end{array} } \right). $$

The eigenvalues of \(J(E_{i} )\) satisfy the equation:

$$ \lambda^{2} - {\text{tr}}(J)\lambda + {\text{Det}}(J) = 0, $$

where,

$$ \begin{array}{*{20}c} {{\text{tr}}(J) = - k_{1} - \frac{{k_{2} }}{\varepsilon } < 0,\quad {\text{Det}}(J) = - \frac{{\left( {V_{4} x_{i} + V_{2} } \right)F^{\prime } \left( {x_{i} } \right)}}{{k_{2}^{2} y_{i} \left( {k_{3}^{2} + y_{i}^{2} } \right)}}} \\ \end{array} , $$

because \(F^{\prime } (x_{1} ) < 0\), \(F^{\prime } (x_{2} ) > 0\) and \(F^{\prime } (x_{3} ) < 0\), so \(E_{1}\) and \(E_{3}\) are asymptotically stable and \(E_{2}\) is an unstable saddle point.

In addition, the two equations on the right of the deterministic system are respectively defined as \(H_{1}\) and \(H_{2}\), then

$$ \frac{{\partial H_{1} }}{\partial x} + \frac{{\partial H_{2} }}{\partial y} = - k_{1} - \frac{{k_{2} }}{\varepsilon } < 0. $$

According to the Bendixson–Dulac criteria, it is clear that there is no closed orbit in the deterministic system, that is, when the deterministic system has a unique equilibrium, it must be globally asymptotically stable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Ji, J., Liu, Y. et al. A confidence ellipse analysis for stochastic dynamics model of Alzheimer's disease. Nonlinear Dyn 111, 13513–13533 (2023). https://doi.org/10.1007/s11071-023-08547-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08547-y

Keywords

Navigation