Skip to main content
Log in

Regime transition and multi-scroll hyperchaos in a discrete neuron model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Most discrete neuron models have simple algebraic structures with easy digital implementation. However, they cannot show the abundant firing regimes of neurons. To address this issue, in this paper, we propose an improved discrete tabu learning neuron (IDTLN) model using sine nonlinearity as the activation function. Using this model, the fixed points and their stability are analyzed theoretically, the parameter-related bifurcation and regime transition behaviors as well as heterogeneous multistability are investigated by numerical tools, and the multi-scroll hyperchaotic behaviors are revealed according to the dynamics distribution in the parameter plane. It is shown that the IDTLN model has two types of fixed points, stable and unstable, and their number and stability types change with the parameters, which leads to the formation of multistability and the generation of multi-scroll hyperchaotic attractors. Besides, we design six pseudorandom number generators (PRNGs) using multi-scroll hyperchaotic sequences provided by the IDTLN model and evaluate their randomness using TestU01. The evaluation results show that this proposed neuron model has high randomness without chaos degradation, which is particularly suitable for PRNG application. Finally, we develop a digital hardware platform to verify the regime transition and multi-scroll hyperchaos of the IDTLN model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data used in this research work are available from the authors by reasonably request.

Notes

  1. http://simul.iro.umontreal.ca/testu01/tu01.html.

References

  1. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89(3), 1569–1578 (2017)

    MathSciNet  Google Scholar 

  2. Serb, A., Bill, J., Khiat, A., Berdan, R., Legenstein, R., Prodromakis, T.: Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses. Nat. Commun. 7, 12611 (2016)

    Google Scholar 

  3. Sangwan, V.K., Lee, H.S., Bergeron, H., et al.: Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554(2), 500–504 (2018)

    Google Scholar 

  4. Babloyantz, A., Lourenco, C.: Brain chaos and computation. Int. J. Neural Syst. 7(4), 461–471 (1996)

    Google Scholar 

  5. Hu, X., Feng, G., Duan, S., Liu, L.: A memristive multilayer cellular neural network with applications to image processing. IEEE Trans. Neural Netw. Learn. Syst. 28(8), 1889–1901 (2017)

    MathSciNet  Google Scholar 

  6. Brosch, T., Neumann, H.: Computing with a canonical neural circuits model with pool normalization and modulating feedback. Neural Comput. 26(12), 2735–2789 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Hong, Q., Chen, H., Sun, J., Wang, C.: Memristive circuit implementation of a self-repairing network based on biological astrocytes in robot application. IEEE Trans. Neural Netw. Learn. Syst. 33(11), 2106–2120 (2022)

    Google Scholar 

  8. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of 2-state neurons. Proc. Natl. Acad. Sci. USA 81(10), 3088–3092 (1984)

    MATH  Google Scholar 

  9. Mondal, A., Upadhyay, R.K., Ma, J., Yadav, B.K., Sharma, S.K., Mondal, A.: Bifurcation analysis and diverse firing activities of a modified excitable neuron model. Cogn. Neurodyn. 13, 393 (2019)

    Google Scholar 

  10. Pisarchik, A.N., Jaimes-Reátegui, R., García-Vellisca, M.A.: Asymmetry in electrical coupling between neurons alters multistable firing behavior. Chaos 28, 033605 (2018)

    MathSciNet  Google Scholar 

  11. Xie, Y., Yao, Z., Ma, J.: Phase synchronization and energy balance between neurons. Front. Inform. Technol. Electron. Eng. 23(4), 1407–1420 (2022)

    Google Scholar 

  12. Bao, H., Zhang, Y., Liu, W., Bao, B.: Memristor synapse-coupled memristive neuron network: synchronization transition and occurrence of chimera. Nonlinear Dyn. 100(1), 937–950 (2020)

    MATH  Google Scholar 

  13. Njitacke, Z.T., Koumetio, B.N., Ramakrishnan, B., Leutcho, G.D., Fozin, T.F., Tsafack, N., Rajagopal, K., Kengne, J.: Hamiltonian energy and coexistence of hidden firing patterns from bidirectional coupling between two different neurons. Cogn. Neurodyn. 16, 899–916 (2022)

    Google Scholar 

  14. Wan, Q., Yan, Z., Li, F., Liu, J., Chen, S.: Multistable dynamics in a Hopfield neural network under electromagnetic radiation and dual bias currents. Nonlinear Dyn. 109, 2085–2101 (2022)

    Google Scholar 

  15. Bao, H., Zhang, J., Wang, N., Kuznetsov, N.V., Bao, B.: Adaptive synapse-based neuron model with heterogeneous multistability and riddled basins. Chaos 32, 123101 (2022)

    MathSciNet  Google Scholar 

  16. Parastesh, F., Rajagopal, K., Alsaadi, F.E., Hayat, T., Pham, V.-T., Hussain, I.: Birth and death of spiral waves in a network of Hindmarsh–Rose neurons with exponential magnetic flux and excitable media. Appl. Math. Comput. 354, 377–384 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Bao, B., Hu, J., Cai, J., Zhang, X., Bao, H.: Memristor-induced mode transitions and extreme multistability in a map-based neuron model. Nonlinear Dyn. 111(4), 3765–3779 (2023)

    Google Scholar 

  18. Beyer, D.A., Ogier, R.G.: Tabu learning: A neural network search method for solving nonconvex optimization problems. In: IEEE International Joint Conference on Neural Networks, Singapore, pp. 953−961 (1991)

  19. Li, C., Liao, X., Yu, J.: Tabu learning method for multiuser detection in CDMA systems. Neurocomputing 49, 411–415 (2002)

    MATH  Google Scholar 

  20. Li, C., Chen, G., Liao, X.: Hopf bifurcation and chaos in tabu learning neuron models. Int. J. Bifurc. Chaos 15(8), 2633–2642 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Bao, B., Hou, L., Zhu, Y., Wu, H., Chen, M.: Bifurcation analysis and circuit implementation for a tabu learning neuron model. Int. J. Electron. Commun. (AEÜ) 121, 153235 (2020)

    Google Scholar 

  22. Hou, L., Bao, H., Xu, Q., Chen, M., Bao, B.: Coexisting infinitely many nonchaotic attractors in a memristive weight-based tabu learning neuron. Int. J. Bifurc. Chaos 31(12), 2150189 (2021)

    MathSciNet  MATH  Google Scholar 

  23. Doubla, I.S., Njitacke, Z.T., Ekonde, S., Tsafack, N., Nkapkop, J.D.D., Kengne, J.: Multistability and circuit implementation of tabu learning two-neuron model: application to secure biomedical images in IoMT. Neural Comput. Appl. 33(21), 14945–14973 (2021)

    Google Scholar 

  24. Xiao, M., Cao, J.: Bifurcation analysis on a discrete-time tabu learning model. J. Comput. Appl. Math. 220(1–2), 725–738 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Rose, R.M., Hindmarsh, J.L.: The assembly of ionic currents in a thalamic neuron I. The three-dimensional model. Proc. R. Soc. Lond. B Biol. Sci. 237(1288), 267–288 (1989)

    Google Scholar 

  26. Ma, J., Yang, Z.Q., Yang, L.J., Tang, J.: A physical view of computational neurodynamics. J. Zhejiang Univ. Sci. A 20, 639 (2019)

    Google Scholar 

  27. Bao, H., Liu, W., Ma, J., Wu, H.: Memristor initial-offset boosting in memristive HR neuron model with hidden firing patterns. Int. J. Bifurc. Chaos 30(10), 2030029 (2020)

    MathSciNet  MATH  Google Scholar 

  28. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Google Scholar 

  29. Xu, Y., Jia, Y., Ge, M., Lu, L., Yang, L., Zhan, X.: Effects of ion channel blocks on electrical activity of stochastic Hodgkin–Huxley neural network under electromagnetic induction. Neurocomputing 283, 196 (2018)

    Google Scholar 

  30. Behdad, R., Binczak, S., Dmitrichev, A.S., Nekorkin, V.I., Bilbault, J.M.: Artificial electrical Morris–Lecar neuron. IEEE Trans. Neural Netw. Learn. Syst. 26(9), 1875–1884 (2015)

    MathSciNet  Google Scholar 

  31. Rulkov, N.F.: Modeling of spiking-bursting neural behavior using two-dimensional map. Phys. Rev. E 65(4), 041922 (2002)

    MathSciNet  MATH  Google Scholar 

  32. Bashkirtseva, I., Nasyrova, V., Ryashko, L.: Stochastic spiking-bursting excitability and transition to chaos in a discrete-time neuron model. Int. J. Bifurc. Chaos 30(10), 2050153 (2020)

    MathSciNet  MATH  Google Scholar 

  33. Li, K., Bao, H., Li, H., Ma, J., Hua, Z., Bao, B.: Memristive Rulkov neuron model with magnetic induction effects. IEEE Trans. Ind. Inform. 18, 1726 (2022)

    Google Scholar 

  34. Hua, Z., Zhou, B., Zhou, Y.: Sine-transform-based chaotic system with FPGA implementation. IEEE Trans. Ind. Electron. 65(3), 2557–2566 (2018)

    Google Scholar 

  35. Fan, W., Chen, X., Wu, H., Li, Z., Xu, Q.: Firing patterns and synchronization of Morris-Lecar neuron model with memristive autapse. Int. J. Electron. Commun. (AEÜ) 158, 154454 (2023)

    Google Scholar 

  36. Bao, H., Chen, C., Hu, Y., Chen, M., Bao, B.: 2-D piecewise-linear neuron model. IEEE Trans. Circuits Syst. II Exp. Briefs 68(4), 1453–1457 (2021)

    Google Scholar 

  37. Bao, H., Hua, Z., Wang, N., Zhu, L., Chen, M., Bao, B.: Initials-boosted coexisting chaos in a 2D sine map and its hardware implementation. IEEE Trans. Ind. Inf. 17(2), 1132–1140 (2021)

    Google Scholar 

  38. Heagy, J.F., Carroll, T.L., Pecora, L.M.: Experimental and numerical evidence for riddled basins in coupled chaotic systems. Phys. Rev. Lett. 73(26), 3528 (1994)

    Google Scholar 

  39. Saha, A., Feudel, U.: Riddled basins of attraction in systems exhibiting extreme events. Chaos 28, 033610 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Datseris, G., Wagemakers, A.: Effortless estimation of basins of attraction. Chaos 32, 023104 (2022)

    MathSciNet  Google Scholar 

  41. Daza, A., Wagemakers, A., Sanjuán, M.A.F.: Classifying basins of attraction using the basin entropy. Chaos Solit Fractals 159, 112112 (2022)

    MathSciNet  MATH  Google Scholar 

  42. Wang, G., Yuan, F., Chen, G., Zhang, Y.: Coexisting multiple attractors and riddled basins of a memristive system. Chaos 28, 013125 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Rong, K., Bao, H., Li, H., Hua, Z., Bao, B.: Memristive Hénon map with hidden Neimark–Sacker bifurcations. Nonlinear Dyn. 108(4), 4459–4470 (2022)

    Google Scholar 

  44. Hua, Z., Chen, Y., Bao, H., Zhou, Y.: Two-dimensional parametric polynomial chaotic system. IEEE Trans. Syst. Man Cybern. Syst. 52(7), 4402–4414 (2022)

    Google Scholar 

  45. Bao, H., Li, H., Hua, Z., Xu, Q., Bao, B.: Sine-transform-based memristive hyperchaotic model with hardware implementation. IEEE Trans. Ind. Inf. (2022). https://doi.org/10.1109/TII.2022.3157296

    Article  Google Scholar 

  46. L’Ecuyer, P., Simard, R.: TestU01: A C library for empirical testing of random number generators. ACM Trans. Math. Softw. 33(4), 22 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under Grant Nos. 62271088, 62201094, and 52277001, and the Scientific Research Foundation of Jiangsu Provincial Education Department, China, under Grant No. 22KJB510001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Bao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, B., Wang, Z., Hua, Z. et al. Regime transition and multi-scroll hyperchaos in a discrete neuron model. Nonlinear Dyn 111, 13499–13512 (2023). https://doi.org/10.1007/s11071-023-08543-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08543-2

Keywords

Navigation