Skip to main content
Log in

Dynamics of neuron-like excitable Josephson junctions coupled by a metal oxide memristive synapse

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Transition of firing modes via synapse is a crucial step in neural coding. The neuron/synapse-like circuits have been proposed to simulate neural behaviors and functions. Despite a few researches of the mimicking neuron inspired on Josephson junction, the dynamical explanation of neuron-like junction is still unclear. We explore the dynamics in the Josephson junction composed of capacitor, nonlinear resistor and supercurrent component. The biophysical mechanism of neuron-like excitability in the junction is further interpreted by using frequency-current curve and two-parameter bifurcation plane. We propose the coupled model with memristive synaptic connection between two junctions to replace the synaptic coupling and neurons bridged for information exchange. It is found that the multiple modes are induced and controlled by the memristive synapse with plasticity. Meanwhile, the firing states of the two junctions with memristive synapse become synchronized under the suitable choices of parameters. These could help in the development of brain-like system with the Josephson junctions and memristive devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Gosak, M., Milojević, M., Duh, M., Skok, K., Perc, M.: Networks behind the morphology and structural design of living systems. Phys. Life Rev. 41, 1–21 (2022)

    Google Scholar 

  2. Majhi, S., Perc, M., Ghosh, D.: Dynamics on higher-order networks: a review. J. R. Soc. Interface. 19, 20220043 (2022)

    Google Scholar 

  3. Ma, J.: Biophysical neurons, energy, and synapse controllability: a review. J. Zhejiang Univ. Sci. A. 24, 109–129 (2023)

    Google Scholar 

  4. Trenchard, H., Perc, M.: Energy saving mechanisms, collective behavior and the variation range hypothesis in biological systems: a review. BioSystems. 147, 40–66 (2016)

    Google Scholar 

  5. Shilnikov, A., Cymbalyuk, G.: Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe. Phys. Rev. Lett. 94, 048101 (2005)

    Google Scholar 

  6. Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurc. Chaos. 10, 1171–1266 (2000)

    MathSciNet  MATH  Google Scholar 

  7. Morozova, E.O., Zakharov, D., Gutkin, B.S., Lapish, C.C., Kuznetsov, A.: Dopamine neurons change the type of excitability in response to stimuli. PLoS Comput. Biol. 12, e1005233 (2016)

    Google Scholar 

  8. Bard Ermentrout, G., Terman, D.H.: Mathematical Foundations of Neuroscience. Springer, New York (2010)

    MATH  Google Scholar 

  9. Mahowald, M., Douglas, R.: A silicon neuron. Nature 354, 515–518 (1991)

    Google Scholar 

  10. Wang, N., Zhang, G.S., Bao, H.: Bursting oscillations and coexisting attractors in a simple memristor-capacitor-based chaotic circuit. Nonlinear Dyn. 97, 1477–1494 (2019)

    MATH  Google Scholar 

  11. Xu, L., Qi, G.Y., Ma, J.: Modeling of memristor-based Hindmarsh-Rose neuron and its dynamical analyses using energy method. Appl. Math. Model. 101, 503–516 (2022)

    MathSciNet  MATH  Google Scholar 

  12. Ren, G., Xu, Y., Wang, C.: Synchronization behavior of coupled neuron circuits composed of memristors. Nonlinear Dyn. 88, 893–901 (2017)

    Google Scholar 

  13. Zhang, G., Ma, J., Alsaedi, A., Ahmad, B., Alzahrani, F.: Dynamical behavior and application in Josephson junction coupled by memristor. Appl. Math. Comput. 321, 290–299 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Bao, H., Zhang, Y., Liu, W., Bao, B.: Memristor synapse-coupled memristive neuron network: synchronization transition and occurrence of chimera. Nonlinear Dyn. 100, 937–950 (2020)

    MATH  Google Scholar 

  15. Zhang, G., Wu, F.Q., Hayat, T., Ma, J.: Selection of spatial pattern on resonant network of coupled memristor and Josephson junction. Commun. Nonlinear Sci. Numer. Simul. 65, 79–90 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Krzysteczko, P., Münchenberger, J., Schäfers, M., Reiss, G., Thomas, A.: The memristive magnetic tunnel junction as a nanoscopic synapse-neuron system. Adv. Mater. 24, 762–766 (2012)

    Google Scholar 

  17. Zhang, T., Yang, K., Xu, X., Cai, Y., Yang, Y., Huang, R.: Memristive devices and networks for brain-inspired computing. Phys. Status Solidi Rapid Res. Lett. 13, 1900029 (2019)

    Google Scholar 

  18. Najem, J.S., Taylor, G.J., Weiss, R.J., Hasan, M.S., Rose, G., Schuman, C.D., Belianinov, A., Collier, C.P., Sarles, S.A.: Memristive ion channel-doped biomembranes as synaptic mimics. ACS Nano 12, 4702–4711 (2018)

    Google Scholar 

  19. Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010)

    Google Scholar 

  20. Chang, T., Jo, S.H., Kim, K.H., Sheridan, P., Gaba, S., Lu, W.: Synaptic behaviors and modeling of a metal oxide memristive device. Appl. Phys. A Mater. Sci. Process. 102, 857–863 (2011)

    Google Scholar 

  21. Moon, J., Ma, W., Shin, J.H., Cai, F., Du, C., Lee, S.H., Lu, W.D.: Temporal data classification and forecasting using a memristor-based reservoir computing system. Nat. Electron. 2, 480–487 (2019)

    Google Scholar 

  22. Wang, J., Zhuge, F.: Memristive synapses for brain-inspired computing. Adv. Mater. Technol. 4, 1800544 (2019)

    Google Scholar 

  23. Bao, B.C., Zhu, Y.X., Ma, J., Bao, H., Wu, H.G., Chen, M.: Memristive neuron model with an adapting synapse and its hardware experiments. Sci. China Technol. Sci. 64, 1107–1117 (2021)

    Google Scholar 

  24. Sahu, D.P., Jetty, P., Jammalamadaka, S.N.: Graphene oxide based synaptic memristor device for neuromorphic computing. Nanotechnology 32, 155701 (2021)

    Google Scholar 

  25. Wang, R., Mu, Z., Sun, H., Wang, Y.: Dual-mode memristor synaptic circuit design and application in image processing. Front. Phys. 9, 690944 (2021)

    Google Scholar 

  26. Maheshwar, P.S., Yang, C., Kim, H., Chua, L.: A voltage mode memristor bridge synaptic circuit with memristor emulators. Sensors. 12, 3587–3604 (2012)

    Google Scholar 

  27. Wu, F.Q., Guo, Y.T., Ma, J.: Reproduce the biophysical function of chemical synapse by using a memristive synapse. Nonlinear Dyn. 109, 2063–2084 (2022)

    Google Scholar 

  28. Guo, Y., Zhou, P., Yao, Z., Ma, J.: Biophysical mechanism of signal encoding in an auditory neuron. Nonlinear Dyn. 105, 3603–3614 (2021)

    Google Scholar 

  29. Liu, Y., Xu, W., jiang Ma, J., Alzahrani, F., Hobiny, A.: A new photosensitive neuron model and its dynamics. Front. Inf. Technol. Electron. Eng. 21, 1387–1396 (2020)

    Google Scholar 

  30. Xie, Y., Yao, Z., Hu, X., Ma, J.: Enhance sensitivity to illumination and synchronization in light-dependent neurons. Chinese Phys. B. 30, 120510 (2021)

    Google Scholar 

  31. Tagne, J.F., Edima, H.C., Njitacke, Z.T., Kemwoue, F.F., Mballa, R.N., Atangana, J.: Bifurcations analysis and experimental study of the dynamics of a thermosensitive neuron conducted simultaneously by photocurrent and thermistance. Eur. Phys. J. Spec. Top. 231, 993–1004 (2022)

    Google Scholar 

  32. Takembo, C.N., Mvogo, A., Ekobena Fouda, H.P., Kofané, T.C.: Effect of electromagnetic radiation on the dynamics of spatiotemporal patterns in memristor-based neuronal network. Nonlinear Dyn. 95, 1067–1078 (2019)

    MATH  Google Scholar 

  33. Takembo, C.N., Mvogo, A., Fouda, H.P.E., Kofané, T.C.: Wave pattern stability of neurons coupled by memristive electromagnetic induction. Nonlinear Dyn. 96, 1083–1093 (2019)

    Google Scholar 

  34. Xie, Y., Zhou, P., Ma, J.: Energy balance and synchronization via inductive-coupling in functional neural circuits. Appl. Math. Model. 113, 175–187 (2023)

    MathSciNet  MATH  Google Scholar 

  35. Upadhyay, R.K., Sharma, S.K., Mondal, A., Mondal, A.: Emergence of hidden dynamics in different neuronal network architecture with injected electromagnetic induction. Appl. Math. Model. 111, 288–309 (2022)

    MathSciNet  MATH  Google Scholar 

  36. Sun, J., Li, C., Lu, T., Akgul, A., Min, F.: A memristive chaotic system with hypermultistability and its application in image encryption. IEEE Access. 8, 139289–139298 (2020)

    Google Scholar 

  37. Yao, Z., Wang, C.: Control the collective behaviors in a functional neural network. Chaos, Solitons and Fractals. 152, 111361 (2021)

    MathSciNet  MATH  Google Scholar 

  38. Tankou Tagne, A.S., Takembo, C.N., Ben-Bolie, H.G., Owona Ateba, P.: Localized nonlinear excitations in diffusive memristor-based neuronal networks. PLoS ONE 14, e0214989 (2019)

    Google Scholar 

  39. Mishra, A., Ghosh, S., Kumar Dana, S., Kapitaniak, T., Hens, C.: Neuron-like spiking and bursting in Josephson junctions: a review. Chaos 31, 052101 (2021)

    MathSciNet  Google Scholar 

  40. Likharev, K.K.: Dynamics of Josephson Junctions and Circuits. Gordon and Breach, New York (1986)

    Google Scholar 

  41. Crotty, P., Schult, D., Segall, K.: Josephson junction simulation of neurons. Phys. Rev. E. 82, 011914 (2010)

    Google Scholar 

  42. Hens, C., Pal, P., Dana, S.K.: Bursting dynamics in a population of oscillatory and excitable Josephson junctions. Phys. Rev. E. 92, 022915 (2015)

    MathSciNet  Google Scholar 

  43. Levi, M., Hoppensteadt, F.C., Miranker, W.L.: Dynamics of the Josephson junction. Q. Appl. Math. 36, 167–198 (1978)

    MathSciNet  Google Scholar 

  44. Chalkiadakis, D., Hizanidis, J.: Dynamical properties of neuromorphic Josephson junctions. Phys. Rev. E. 106, 044206 (2022)

    Google Scholar 

  45. Hu, C.K.: Spiking and bursting in Josephson junction. IEEE Trans. Circuits Syst. II Exp. Briefs. 53, 1031–1034 (2006)

    Google Scholar 

  46. Blackburn, J.A., Smith, H.J.T.: Dynamics of double-Josephson-junction interferometers. J. Appl. Phys. 49, 2452–2455 (1978)

    Google Scholar 

  47. Wiesenfeld, K., Colet, P., Strogatz, S.H.: Synchronization Transitions in a Disordered Josephson Series Array. Phys. Rev. Lett. 76, 404–407 (1996)

    Google Scholar 

  48. Ray, A., Mishra, A., Ghosh, D., Kapitaniak, T., Dana, S.K., Hens, C.: Extreme events in a network of heterogeneous Josephson junctions. Phys. Rev. E. 101, 032209 (2020)

    Google Scholar 

  49. Zibold, T., Nicklas, E., Gross, C., Oberthaler, M.K.: Classical bifurcation at the transition from rabi to Josephson dynamics. Phys. Rev. Lett. 105, 204101 (2010)

    Google Scholar 

  50. Zhang, Y., Wang, C.N., Tang, J., Ma, J., Ren, G.D.: Phase coupling synchronization of FHN neurons connected by a Josephson junction. Sci. China Technol. Sci. 63, 2328–2338 (2020)

    Google Scholar 

  51. Segall, K., Legro, M., Kaplan, S., Svitelskiy, O., Khadka, S., Crotty, P., Schult, D.: Synchronization dynamics on the picosecond time scale in coupled Josephson junction neurons. Phys. Rev. E. 95, 032220 (2017)

    Google Scholar 

  52. Marcus, P.M., Imry, Y., Ben-Jacob, E.: Characteristic modes and the transition to chaos of a resonant Josephson circuit. Solid State Commun. 41, 161–166 (1982)

    Google Scholar 

  53. Whan, C.B., Lobb, C.J.: Complex dynamical behavior in RCL-shunted Josephson tunnel junctions. Phys. Rev. E. 53, 405–413 (1996)

    Google Scholar 

  54. Zhou, Z.Y., Xiao, H., Wang, S., Fu, X.H., Yan, J.: Preparation and DC characteristics of MgB2/B/MgB2 josephson junctions. Acta Phys. Sin. 65, 180301 (2016)

    Google Scholar 

  55. Prescott, S.A., De Koninck, Y., Sejnowski, T.J.: Biophysical basis for three distinct dynamical mechanisms of action potential initiation. PLoS Comput. Biol. 4, e1000198 (2008)

    MathSciNet  Google Scholar 

  56. Wu, F.Q., Gu, H.G., Jia, Y.B.: Bifurcations underlying different excitability transitions modulated by excitatory and inhibitory memristor and chemical autapses. Chaos, Solitons and Fractals. 153, 111611 (2021).

  57. Tsumoto, K., Kitajima, H., Yoshinaga, T., Aihara, K., Kawakami, H.: Bifurcations in Morris-Lecar neuron model. Neurocomputing 69, 293–316 (2006)

    Google Scholar 

  58. Xing, M., Song, X., Yang, Z., Chen, Y.: Bifurcations and excitability in the temperature-sensitive Morris-Lecar neuron. Nonlinear Dyn. 100, 2687–2698 (2020)

    Google Scholar 

  59. Qiu, Q., Ma, R., Kurths, J., Zhan, M.: Swing equation in power systems: approximate analytical solution and bifurcation curve estimate. Chaos 30, 013110 (2020)

    MathSciNet  MATH  Google Scholar 

  60. Skubov, D., Lukin, A., Popov, I.: Bifurcation curves for synchronous electrical machine. Nonlinear Dyn. 83, 2323–2329 (2016)

    MathSciNet  MATH  Google Scholar 

  61. Hesse, J., Schleimer, J.-H., Maier, N., Schmitz, D., Schreiber, S.: Temperature elevations can induce switches to homoclinic action potentials that alter neural encoding and synchronization. Nat. Commun. 13, 3934 (2022)

    Google Scholar 

  62. Dana, S.K., Sengupta, D.C., Edoh, K.: Chaotic dynamics in Josephson junction. IEEE Trans Circuits Syst. I Fundam. Theory Appl. 48, 990–996 (2001)

    Google Scholar 

  63. Zhou, P., Zhang, X., Hu, X., Ren, G.: Energy balance between two thermosensitive circuits under field coupling. Nonlinear Dyn. 110, 1879–1895 (2022)

    Google Scholar 

  64. Zhou, P., Yao, Z., Ma, J., Zhu, Z.: A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus. Chaos, Solitons and Fractals. 145, 1107 (2021)

    MathSciNet  Google Scholar 

  65. Xie, Y., Zhu, Z.G., Zhang, X.F., Ren, G.D.: Control of firing mode in nonlinear neuron circuit driven by photocurrent. Acta Phys. Sin. 70, 210502 (2021)

    Google Scholar 

  66. Zhang, Y., Xu, Y., Yao, Z., Ma, J.: A feasible neuron for estimating the magnetic field effect. Nonlinear Dyn. 102, 1849–1867 (2020)

    Google Scholar 

  67. Blackburn, J.A., Baker, G.L., Smith, H.J.T.: Intermittent synchronization of resistively coupled chaotic Josephson junctions. Phys. Rev. B. 62, 5931–5935 (2000)

    Google Scholar 

Download references

Funding

This project is partially supported by National Natural Science Foundation of China under Grant No. 12072139.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuqiang Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Yao, Z. Dynamics of neuron-like excitable Josephson junctions coupled by a metal oxide memristive synapse. Nonlinear Dyn 111, 13481–13497 (2023). https://doi.org/10.1007/s11071-023-08524-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08524-5

Keywords

Navigation