Skip to main content
Log in

Deformation scheme of nonlinear Rosen–Zener tunneling for Bose–Einstein condensates in a triple-well potential

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We investigate Rosen–Zener tunneling for Bose–Einstein condensates in a triple-well potential within the framework of mean-field treatment. Firstly, we exactly calculate tunneling dynamics for triple-well in the linear case, where the population evolution of each well is robust and all atoms are finally trapped in the single well that is initially uploaded. In this case, tunneling dynamics are symmetrical when all atoms are populated in the first well and third well. However, as the nonlinear interaction is introduced, tunneling dynamics will be significantly changed. On the one hand, the symmetry will be broken, some atoms will not be confined to the starting well. On the other hand, nonlinear Josephson oscillation will be presented within a fixing interval. When the interaction exceeds this interval, the self-trapping solution emerges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availibility Statement

All data generated or analyzed during this study are included in this article.

References

  1. Liu, J., Fu, L., Ou, B.Y., Chen, S.G., Choi, D.I., Wu, B., Niu, Q.: Theory of nonlinear landau-zener tunneling. Phys. Rev. A 66(2), 023404 (2002)

    Article  Google Scholar 

  2. Wang, G.F., Ye, D.F., Fu, L.B., Chen, X.Z., Liu, J.: Landau-zener tunneling in a nonlinear three-level system. Phys. Rev. A 74(3), 033414 (2006)

    Article  Google Scholar 

  3. Dou, F.Q., Li, S.C., Cao, H.: Combined effects of particle interaction and nonlinear sweep on landau-zener transition. Phys. Lett. A 376(1), 51–55 (2011)

    Article  Google Scholar 

  4. Ye, D.F., Fu, L.B., Liu, J.: Rosen-zener transition in a nonlinear two-level system. Phys. Rev. A 77(1), 013402 (2008)

    Article  Google Scholar 

  5. Feng, P., Wang, W.Y., Sun, J.A., Dou, F.Q.: Demkov-kunike transition dynamics in a nonlinear two-level system. Nonlinear Dynam. 91(4), 2477–2484 (2018)

    Article  Google Scholar 

  6. Cao, H., Liu, X.J., Liu, M.: Dynamical transition in a nonlinear two-level system driven by a special hyperbolic-secant external field. Nonlinear Dynamics pp. 1–8 (2022)

  7. Graefe, E., Korsch, H., Witthaut, D.: Mean-field dynamics of a bose-einstein condensate in a time-dependent triple-well trap: Nonlinear eigenstates, landau-zener models, and stimulated raman adiabatic passage. Phys. Rev. A 73(1), 013617 (2006)

    Article  Google Scholar 

  8. Liu, B., Fu, L.B., Yang, S.P., Liu, J.: Josephson oscillation and transition to self-trapping for bose-einstein condensates in a triple-well trap. Phys. Rev. A 75(3), 033601 (2007)

    Article  Google Scholar 

  9. Raghavan, S., Smerzi, A., Fantoni, S., Shenoy, S.: Coherent oscillations between two weakly coupled bose-einstein condensates: Josephson effects, \(\pi \) oscillations, and macroscopic quantum self-trapping. Phys. Rev. A 59(1), 620 (1999)

    Article  Google Scholar 

  10. Adhikari, S.: Symmetry breaking, josephson oscillation and self-trapping in a self-bound three-dimensional quantum ball. Sci. Rep. 7(1), 1–10 (2017)

    Article  Google Scholar 

  11. Smerzi, A., Fantoni, S., Giovanazzi, S., Shenoy, S.: Quantum coherent atomic tunneling between two trapped bose-einstein condensates. Phys. Rev. Lett. 79(25), 4950 (1997)

    Article  Google Scholar 

  12. Albiez, M., Gati, R., Fölling, J., Hunsmann, S., Cristiani, M., Oberthaler, M.K.: Direct observation of tunneling and nonlinear self-trapping in a single bosonic josephson junction. Phys. Rev. lett. 95(1), 010402 (2005)

    Article  Google Scholar 

  13. Morsch, O., Oberthaler, M.: Dynamics of bose-einstein condensates in optical lattices. Rev. Modern Phys. 78(1), 179 (2006)

    Article  Google Scholar 

  14. Dou, F.Q., Cao, H., Liu, J., Fu, L.B.: High-fidelity composite adiabatic passage in nonlinear two-level systems. Phys. Rev. A 93(4), 043419 (2016)

    Article  Google Scholar 

  15. Zhu, J.J., Chen, X., Jauslin, H.R., Guérin, S.: Robust control of unstable nonlinear quantum systems. Phys. Rev. A 102(5), 052203 (2020)

    Article  MathSciNet  Google Scholar 

  16. Lahini, Y., Pozzi, F., Sorel, M., Morandotti, R., Christodoulides, D.N., Silberberg, Y.: Effect of nonlinearity on adiabatic evolution of light. Phys. Rev. Lett. 101(19), 193901 (2008)

    Article  Google Scholar 

  17. Li, S.C., Fu, L.B., Liu, J.: Nonlinear landau-zener-stückelberg-majorana interferometry. Phys. Rev. A 98(1), 013601 (2018)

    Article  Google Scholar 

  18. Pitaevskii, L.P., Stringari, S., Stringari, S.: Bose-einstein condensation. 116. Oxford University Press (2003)

  19. Jiang, X., Duan, W.s., Li, S.c., Shi, Y.r.: Rosen–zener transition of two-component bose–einstein condensates. Journal of Physics B: Atomic, Molecular and Optical Physics 42(18), 185001 (2009)

  20. Li, S.C., Fu, L.B.: Nonlinear rosen-zener-stückelberg interferometry of a bose-einstein condensate. Phys. Rev. A 102(3), 033313 (2020)

    Article  Google Scholar 

  21. McCormack, G., Nath, R., Li, W.: Nonlinear dynamics of rydberg-dressed bose-einstein condensates in a triple-well potential. Phys. Rev. A 102(6), 063329 (2020)

    Article  MathSciNet  Google Scholar 

  22. Rosen, N., Zener, C.: Double stern-gerlach experiment and related collision phenomena. Phys. Rev. 40(4), 502 (1932)

    Article  MATH  Google Scholar 

  23. Thomas, G.F.: Validity of the rosen-zener conjecture for gaussian-modulated pulses. Phys. Rev. A 27(5), 2744 (1983)

    Article  Google Scholar 

  24. Osherov, V., Voronin, A.: Exact analytical solution of the quantum rosen-zener-demkov model. Phys. Rev. A 49(1), 265 (1994)

    Article  Google Scholar 

  25. Simeonov, L.S., Vitanov, N.V.: Exactly solvable two-state quantum model for a pulse of hyperbolic-tangent shape. Phys. Rev. A 89(4), 043411 (2014)

    Article  Google Scholar 

  26. Livi, R., Franzosi, R., Oppo, G.L.: Self-localization of bose-einstein condensates in optical lattices via boundary dissipation. Phys. Rev. Lett. 97(6), 060401 (2006)

    Article  Google Scholar 

  27. Ng, G., Hennig, H., Fleischmann, R., Kottos, T., Geisel, T.: Avalanches of bose-einstein condensates in leaking optical lattices. New J. Phys. 11(7), 073045 (2009)

    Article  Google Scholar 

  28. Brazhnyi, V.A., Konotop, V.V., Perez-Garcia, V.M., Ott, H.: Dissipation-induced coherent structures in bose-einstein condensates. Phys. Rev. Lett. 102(14), 144101 (2009)

    Article  Google Scholar 

  29. Lewis, H.R., Jr.: Classical and quantum systems with time-dependent harmonic-oscillator-type hamiltonians. Phys. Rev. Lett. 18(13), 510 (1967)

    Article  Google Scholar 

  30. Lewis, H.R., Jr., Riesenfeld, W.: An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field. J. Math. Phys. 10(8), 1458–1473 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hussain, M., Naeem, M.N., Taj, M., Tounsi, A.: Simulating vibration of single-walled carbon nanotube using rayleigh-ritz’s method. Adv. Nano Res. 8(3), 215–228 (2020)

    Google Scholar 

  32. Hussain, M., Naeem, M.N., Tounsi, A.: Numerical study for nonlocal vibration of orthotropic swcnts based on kelvin’s model. Adv. Concrete Construct. 9(3), 301–312 (2020)

    Google Scholar 

  33. Hussain, M., Naeem, M.N., Khan, M.S., Tounsi, A.: Computer-aided approach for modelling of fg cylindrical shell sandwich with ring supports. Comput. Concrete, Int. J. 25(5), 411–425 (2020)

    Google Scholar 

  34. Hussain, M., Naeem, M.N., Asghar, S., Tounsi, A.: Theoretical impact of kelvin’s theory for vibration of double walled carbon nanotubes. Adv. Nano Res. 8(4), 307–322 (2020)

    Google Scholar 

  35. Hussain, M., Naeem, M.N., Tounsi, A., Taj, M.: Nonlocal effect on the vibration of armchair and zigzag swcnts with bending rigidity. Adv. Nano Res. 7(6), 431–442 (2019)

    Google Scholar 

  36. Liu, J., Wu, B., Niu, Q.: Nonlinear evolution of quantum states in the adiabatic regime. Phys. Rev. Lett. 90(17), 170404 (2003)

    Article  Google Scholar 

  37. Khaykovich, L., Schreck, F., Ferrari, G., Bourdel, T., Cubizolles, J., Carr, L.D., Castin, Y., Salomon, C.: Formation of a matter-wave bright soliton. Science 296(5571), 1290–1293 (2002)

    Article  Google Scholar 

  38. Strecker, K.E., Partridge, G.B., Truscott, A.G., Hulet, R.G.: Formation and propagation of matter-wave soliton trains. Nature 417(6885), 150–153 (2002)

    Article  Google Scholar 

  39. Rab, M., Cole, J., Parker, N., Greentree, A., Hollenberg, L., Martin, A.: Spatial coherent transport of interacting dilute bose gases. Phys. Rev. A 77(6), 061602 (2008)

    Article  Google Scholar 

  40. Rab, M., Hayward, A., Cole, J., Greentree, A., Martin, A.: Interferometry using adiabatic passage in dilute-gas bose-einstein condensates. Phys. Rev. A 86(6), 063605 (2012)

    Article  Google Scholar 

  41. Eckert, K., Lewenstein, M., Corbalán, R., Birkl, G., Ertmer, W., Mompart, J.: Three-level atom optics via the tunneling interaction. Phys. Rev. A 70(2), 023606 (2004)

    Article  Google Scholar 

  42. Deasy, K., Busch, T., Niu, Y., Gong, S., Jin, S., Chormaic, S.: Controlled creation of spatial superposition states for single atoms. arXiv preprint quant-ph/0611174 (2006)

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Cao.

Ethics declarations

Conflicts of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, H. Deformation scheme of nonlinear Rosen–Zener tunneling for Bose–Einstein condensates in a triple-well potential. Nonlinear Dyn 111, 13279–13286 (2023). https://doi.org/10.1007/s11071-023-08523-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08523-6

Keywords

Navigation