Skip to main content
Log in

A hybrid frequency-temporal reduced-order method for nonlinear dynamics

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Solving dynamics problem in the frequency domain gives significant advantages compared with solutions fully computed in the temporal domain, but history-dependent nonlinear behaviour is an obstacle to employ that strategy. A hybrid approach is proposed to solve the nonlinear behaviour in the temporal domain, while the mechanical equilibrium is solved using a frequency strategy coupled with model-order reduction methods. In order to employ the fast Fourier transform (FFT) robustly for the transient regime, artificial numerical damping is used. The reduced-order hybrid temporal-frequency approach is investigated for two- and three-dimensional applications; it appears as a robust and proficient technique to simulate structures under transient dynamic loadings until failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Wu, H., Wu, P., Li, F., Shi, H., Xu, K.: Fatigue analysis of the gearbox housing in high-speed trains under wheel polygonization using a multibody dynamics algorithm. Eng. Fail. Anal. 100, 351–364 (2019)

    Article  Google Scholar 

  2. Proso, U., Slavic, J., Boltežar, M.: Vibration-fatigue damage accumulation for structural dynamics with non-linearities. Int. J. Mech. Sci. 106, 72–77 (2016)

    Article  Google Scholar 

  3. Marsh, G., Wignall, C., Thies, P.R., Barltrop, N., Incecik, A., Venugopal, V., Johanning, L.: Review and application of Rainflow residue processing techniques for accurate fatigue damage estimation. Int. J. Fatigue 82, 757–765 (2016)

    Article  Google Scholar 

  4. Lemaitre, J.: A Course on Damage Mechanics. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  5. Hall, J.F.: An FFT algorithm for structural dynamics. Earthq. Eng. Struct. Dyn. 10(6), 797–811 (1982). https://doi.org/10.1002/eqe.4290100605

    Article  Google Scholar 

  6. Bishop, R.: The treatment of damping forces in vibration theory. J. R. Aeronaut. Soc. 59(539), 738–742 (1955)

    Article  Google Scholar 

  7. Chinesta, F., Ladevèze, P.: eds.: Separated Representations and PGD-Based Model Reduction, vol. 554 of CISM International Centre for Mechanical Sciences. Springer, Vienna (2014)

  8. Hansteen, O.E., Bell, K.: On the accuracy of mode superposition analysis in structural dynamics. Earthq. Eng. Struct. Dyn. 7(5), 405–411 (1979). https://doi.org/10.1002/eqe.4290070502

    Article  Google Scholar 

  9. Avitabile, P.: Twenty years of structural dynamic modification—a review. J. Sound Vib., 12 (2003)

  10. Idelsohn, S.R., Cardona, A.: A reduction method for nonlinear structural dynamic analysis. Comput. Methods Appl. Mech. Eng. 49, 253–279 (1985)

    Article  MATH  Google Scholar 

  11. AL-Shudeifat, M.A., Butcher, E.A.: Order reduction of forced nonlinear systems using updated LELSM modes with new Ritz vectors. Nonlinear Dyn., vol. 62, pp. 821–840 (2010)

  12. Eftekhar Azam, S., Mariani, S.: Investigation of computational and accuracy issues in POD-based reduced order modeling of dynamic structural systems. Eng. Struct. 54, 150–167 (2013)

    Article  Google Scholar 

  13. Radermacher, A., Reese, S.: A comparison of projection-based model reduction concepts in the context of nonlinear biomechanics. Arch. Appl. Mech. 83, 1193–1213 (2013)

    Article  MATH  Google Scholar 

  14. Tegtmeyer, S., Fau, A., Bénet, P., Nackenhorst, U.: “On the selection of snapshot computation for proper orthogonal decomposition in structural dynamics. In: Proceeding of the Conference APM (2017)

  15. Néron, D., Ladevèze, P.: Proper generalized decomposition for multiscale and multiphysics problems. Arch. Comput. Methods Eng. 17(4), 351–372 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chinesta, F., Ladevèze, P., Cueto, E.: A short review on model order reduction based on proper generalized decomposition. Arch. Comput. Methods Eng. 18(4), 395–404 (2011)

    Article  Google Scholar 

  17. Ammar, A., Mokdad, B., Chinesta, F., Keunings, R.: A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids: Part II: Transient simulation using space-time separated representations. J. Nonnewton. Fluid Mech. 144, 98–121 (2007)

    Article  MATH  Google Scholar 

  18. Boucinha, L., Gravouil, A., Ammar, A.: Space-time proper generalized decompositions for the resolution of transient elastodynamic models. Comput. Methods Appl. Mech. Eng. 255, 67–88 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Barbarulo, A., Ladevèze, P., Riou, H., Kovalevsky, L.: Proper generalized decomposition applied to linear acoustic: a new tool for broad band calculation. J. Sound Vib. 333, 2422–2431 (2014)

    Article  Google Scholar 

  20. de Brabander, P.: Sur la TVRC en dynamique transitoire: approche large bande de fréquence et réduction de modèle. Ph.D. thesis, Université Paris-Saclay (2021)

  21. Chevreuil, M., Nouy, A.: Model order reduction based on proper generalized decomposition for the propagation of uncertainties in structural dynamics. Int. J. Numer. Methods Eng. 89, 241–268 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Malik, M.H., Borzacchiello, D., Aguado, J.V., Chinesta, F.: Advanced parametric space-frequency separated representations in structural dynamics: A harmonic-modal hybrid approach. Comptes Rendus Mécanique 346, 590–602 (2018)

    Article  Google Scholar 

  23. Quaranta, G., Argerich Martin, C., Ibañez, R., Duval, J.L., Cueto, E., Chinesta, F.: From linear to nonlinear PGD-based parametric structural dynamics. Comptes Rendus Mécanique 347, 445–454 (2019)

    Article  Google Scholar 

  24. Germoso, C., Aguado, J.V., Fraile, A., Alarcon, E., Chinesta, F.: Efficient PGD-based dynamic calculation of non-linear soil behavior. Comptes Rendus Mécanique 344, 24–41 (2016)

    Article  Google Scholar 

  25. Yang, C., Liang, K., Rong, Y., Sun, Q.: A hybrid reduced-order modeling technique for nonlinear structural dynamic simulation. Aerosp. Sci. Technol. 84, 724–733 (2019)

    Article  Google Scholar 

  26. Lemaitre, J., Desmorat, R.: Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures. Springer, Berlin (2005)

    Google Scholar 

  27. Cameron, T.M., Griffin, J.H.: An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems. J. Appl. Mech. 56, 149–154 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhu, T., Zhang, G., Zang, C.: Frequency-domain nonlinear model updating based on analytical sensitivity and the Multi-Harmonic balance method. Mech. Syst. Signal Process. 163, 108169 (2022)

    Article  Google Scholar 

  29. Kappauf, J., Bäuerle, S., Hetzler, H.: A combined FD-HB approximation method for steady-state vibrations in large dynamical systems with localised nonlinearities. Comput. Mech. 70, 1241–1256 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nacivet, S., Pierre, C., Thouverez, F., Jezequel, L.: A dynamic Lagrangian frequency-time method for the vibration of dry-friction-damped systems. J. Sound Vib. 265, 201–219 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Von Groll, G., Ewins, D.: The harmonic balance method with arc-length continuation in rotor/stator contact problems. J. Sound Vib. 241, 223–233 (2001)

    Article  Google Scholar 

  32. Leine, R.I., Schreyer, F.: A mixed shooting-harmonic balance method for unilaterally constrained mechanical systems. Arch. Mech. Eng. 63(2), 297–314 (2016)

    Article  Google Scholar 

  33. Ladevèze, P.: Nonlinear Computational Structural Mechanics: New Approaches and Non-Incremental Methods of Calculation. Mechanical Engineering Series. Springer, New York (1999)

    Book  MATH  Google Scholar 

  34. Boucard, P.A., Champaney, L.: A suitable computational strategy for the parametric analysis of problems with multiple contact. Int. J. Numer. Methods Eng. 57(9), 1259–1281 (2003). https://doi.org/10.1002/nme.724

    Article  MATH  Google Scholar 

  35. Rodriguez, S., Néron, D., Charbonnel, P.-E., Ladevèze, P., Nahas, G.: Non incremental LATIN-PGD solver for nonlinear vibratoric dynamics problems,” in 14ème Colloque National en Calcul des Structures, CSMA 2019. Presqu’Île de Giens, France (2019)

  36. Vandoren, B., De Proft, K., Simone, A., Sluys, L.: A novel constrained LArge Time INcrement method for modelling quasi-brittle failure. Comput. Methods Appl. Mech. Eng. 265, 148–162 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Vitse, M., Néron, D., Boucard, P.-A.: Dealing with a nonlinear material behavior and its variability through PGD models: application to reinforced concrete structures. Finite Elem. Anal. Des. 153, 22–37 (2019)

  38. Bhattacharyya, M., Fau, A., Nackenhorst, U., Néron, D., Ladevèze, P.: A latin-based model reduction approach for the simulation of cycling damage. Comput. Mech. 62(4), 725–743 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Bhattacharyya, M., Fau, A., Desmorat, R., Alameddin, S., Néron, D., Ladevèze, P., Nackenhorst, U.: A kinetic two-scale damage model for high-cycle fatigue simulation using multi-temporal latin framework. Eur. J. Mech. A Solids, 77 (2019)

  40. Iturra, S.R.: Abaques virtuelle pour le génie parasismique incluant des parametres associes au chargement. Ph.D. thesis, Université Paris-Saclay (2021)

  41. Humar, J.L., Xia, H.: Dynamic response analysis in the frequency domain. Earthq. Eng. Struct. Dyn. 22(1), 1–12 (1993)

    Article  Google Scholar 

  42. Chevreuil, M., Ladevèze, P., Rouch, P.: Transient analysis including the low- and the medium-frequency ranges of engineering structures. Comput. Struct. 85, 1431–1444 (2007)

    Article  Google Scholar 

  43. Eugeni, M., Saltari, F., Mastroddi, F.: Structural damping models for passive aeroelastic control. Aerosp. Sci. Technol. 118, 107011 (2021)

    Article  Google Scholar 

  44. Chouaki, A.T., Ladevèze, P., Proslier, L.: Updating structural dynamic models with emphasis on the damping properties. AIAA J., 36(1) (1998)

  45. Lemaitre, J., Chaboche, J.-L.: Mechanics of Solid Materials. Cambridge University Press (1994)

  46. Bhattacharyya, M., Fau, A., Nackenhorst, U., Néron, D., Ladevèze, P.: A model reduction technique in space and time for fatigue simulation. In: Multiscale Modeling of Heterogeneous Structures. Springer International Publishing, pp. 183–203 (2018)

  47. Lee, J., Fenves, G.L.: A return-mapping algorithm for plastic-damage models: 3-D and plane stress formulation. Int. J. Numer. Methods Eng. 50(2), 487–506 (2001)

    Article  MATH  Google Scholar 

  48. Nouy, A.: A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations. Comput. Methods Appl. Mech. Eng. 199(23–24), 1603–1626 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Lions, J.-L., Maday, Y., Turinici, G.: Résolution d’EDP par un schéma en temps “pararéel’’. Comptes Rendus de l’Académie des Sciences - Series I - Mathematics 332, 661–668 (2001)

    MATH  Google Scholar 

  50. Chartier, P., Philippe, B.: A parallel shooting technique for solving dissipative ODE’s. Computing 51(3–4), 209–236 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  51. Humar, J.L.: Dynamics of Structures. Prentice-Hall, Englewood Cliffs (1990)

    MATH  Google Scholar 

  52. Van Blaricum, M., Mittra, R.: Problems and solutions associated with Prony’s method for processing transient data. IEEE Trans. Electromagn. Compat. 20, 174–182 (1978)

  53. Scanff, R., Nachar, S., Boucard, P.-A., Néron, D.: “A study on the latin-PGD method: analysis of some variants in the light of the latest developments. Arch. Comput. Methods Eng. (2020)

  54. Géradin, M., Rixen, D.J.: Mechanical vibrations : theory and application to structural dynamics. Chichester New york Weinheim: John Wiley, third ed., (2015)

  55. Heyberger, C., Boucard, P.-A., Néron, D.: Multiparametric analysis within the proper generalized decomposition framework. Comput. Mech. 49(3), 277–289 (2012)

    Article  MATH  Google Scholar 

  56. Allemang, R.J., Brown, D.L.: Experimental Modal Analysis and Dynamic Component Synthesis, Volume III: Modal Parameter Estimation. USAF Report: AFWAL-TR-87-3069 (1987)

Download references

Acknowledgements

The SEISM Institute is acknowledged for funding this research activity. This work was performed using HPC resources from the “Mésocentre” computing center of CentraleSupélec and école normale supérieure Paris-Saclay supported by CNRS and Région Île-de-France. http://mesocentre.centralesupelec.fr/

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Daby-Seesaram.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daby-Seesaram, A., Fau, A., Charbonnel, PÉ. et al. A hybrid frequency-temporal reduced-order method for nonlinear dynamics. Nonlinear Dyn 111, 13669–13689 (2023). https://doi.org/10.1007/s11071-023-08513-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08513-8

Keywords

Navigation