Skip to main content
Log in

Foot trajectory following control of hexapod robot based on Udwadia–Kalaba theory

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper provides an adaptive robust control strategy for foot trajectory following control of hexapod robot on basis of the Udwadia–Kalaba theory. In this paper, the foot trajectory following control problem of the hexapod robot is transformed into the problem of solving the system control constraint force on basis of the Udwadia–Kalaba theory. Compared with the traditional control strategy, linearization or approximations are not required by using the Udwadia–Kalaba theory for nonlinear system such as the hexapod robot. Due to modeling error, measurement error and the change of working state, the system may have non-ideal initial conditions, vibration interference and other uncertain factors during operation, which affect the control accuracy. An adaptive robust controller is designed for solving uncertainties. Meanwhile, the stability is analyzed by using the second method of Lyapunov function. Finally, the accuracy and stability of the control method proposed are verified by establishing the leg model of the hexapod robot and conducting simulation analysis. The simulation results show that the provided adaptive control process has faster error convergence speed and response speed compared with the sliding mode control method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article.

References

  1. Wei, Y.F., Zhou, C., Guo, J., et al.: CPG-based stable walking control of the quadruped robot on the slope. Control Eng. China 28(06), 1055–1060 (2021)

    Google Scholar 

  2. Wang, X.J., Zhu, X.A., Wang, Y.: The impact of robot application on manufacturing employment. J. Quant. Tech. Econ. 39(04), 88–106 (2022)

    Google Scholar 

  3. Liu, F.: The predicament of my country’s industrial robot industry. Inform China 2022(02), 78–83 (2022)

    Google Scholar 

  4. Wei, J.T., Wang, L., Yang, H.Q.: Analysis of the application path of industrial robots in the field of automation. Ind. Innov. 2022(04), 36–38 (2022)

    Google Scholar 

  5. Guo, J., Xie, X., Jiang, P.: Structural design and motion analysis of hexapod bionic robot. Mach. Tool Hydraul. 47(03), 21–26 (2019)

    Google Scholar 

  6. Liu, P.: Research on Motion of Wheel-foot Hybrid Robot. Chongqing University of Posts and Telecommunications. Chongqing, China (2021)

    Google Scholar 

  7. Liu, X.F., Zhang, W.C., Wu, H., et al.: Analysis and prospect of motion control algorithm for legged rescue robot. Chin. Med. Equip. J. 43(01), 89–95 (2022)

    Google Scholar 

  8. Zhang, Z.F., Han, L.L.: Preliminary study on lunar robot for manned lunar exploration. Manned Spacefl. 25(05), 561–571 (2019)

    Google Scholar 

  9. Liu, Q.Y., Jing, T.T.: Survey on hexapod walking robot and gait planning. J. Chongqing Univ. Technol. (Nat. Sci.) 29(07), 87–94 (2015)

    Google Scholar 

  10. Wang, X.J.: Research on gait and leg control method for high-speed running quadruped robot. Yanshan University. Qinhuangdao, China (2021)

    Google Scholar 

  11. Zhao, J.B., Chen, Y.H., Wang, J.Z.: Research on leg impedance control for electronic wheel-legged robot based on fractional order. Trans. Beijing Instit. Technol. 39(02), 187–192 (2019)

    Google Scholar 

  12. Xie, S.L., Mei, J.P., Liu, H.T.: Kinematics modeling and simulation of trajectory tracking control of a foot-plate-based lower-limb rehabilitation robot. J. Tianjin Univ. Sci. Technol. 51(05), 443–452 (2018)

    Google Scholar 

  13. Park, H.Y., Kim, J.H., Yamamoto, K.: a new stability framework for trajectory tracking control of biped walking robots. IEEE Trans. Ind. Inform. 18(10), 6767–6777 (2022)

    Google Scholar 

  14. Oguzhan, K., Yagiz, S., Melih, B., et al.: Design, implementation, and evaluation of a backstepping control algorithm for an active ankle–foot orthosis. Control Eng. Pract. 106, 104667 (2021)

    Google Scholar 

  15. Tian, J., Yuan, L., Xiao, W., et al.: Trajectory following control of lower limb exoskeleton robot based on Udwadia–Kalaba theory. J. Vib. Control. 28, 3383 (2021)

    MathSciNet  Google Scholar 

  16. Tian, J., Yuan, L., Xiao, W., et al.: Constrained control methods for lower extremity rehabilitation exoskeleton robot considering unknown perturbations. Nonlinear Dyn. 108(2), 1395–1408 (2022)

    Google Scholar 

  17. Udwadia, F.E., Kalaba, R.E.: Analytical dynamics: a new approach. Cambridge University Press, New York (1996)

    MATH  Google Scholar 

  18. Zhao, H., Zhao, F.M., Huang, K., et al.: Position control of mechanical manipulator based on Udwadia–Kalaba theory. J. Hefei Univ. Techn. (Nat. Sci.) 41(4), 433–438 (2018)

    Google Scholar 

  19. Zhen, S.C., Zhao, H., Huang, K., et al.: On Kepler’s law: Application of the Udwadia-Kalaba theory. Sci. Sin. (Phys., Mech. Astron.) 44(01), 24–31 (2014)

    Google Scholar 

  20. Udwadia, F.E., Kalaba, R.E.: A new perspective on constrained motion. Math. Phys. Sci. 439(9), 407–410 (1992)

    MathSciNet  MATH  Google Scholar 

  21. Udwadia, F.E., Kalaba, R.E.: On motion. J. Frankl. Inst. 330(3), 571–577 (1993)

    MATH  Google Scholar 

  22. Udwadia, F.E., Kalaba, R.E.: Nonideal constraints and Lagrangian dynamics. J. Aerosp. Eng. 13(1), 17–22 (2000)

    Google Scholar 

  23. Udwadia, F.E., Kalaba, R.E.: On the foundations of analytical dynamics. Int. J. Non-Linear Mech. 37(6), 1079–1090 (2002)

    MathSciNet  MATH  Google Scholar 

  24. Udwadia, F., Wanichanon, T.: On general nonlinear constrained mechanical systems. Numer. Algebra Control Optim. 3(3), 425–443 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Yu, R.R., Zhao, H., Zhen, S.C., et al.: A novel approach for 2-degrees of freedom redundant parallel manipulator dynamics. Adv. Mech. Eng. (Sage Publications Inc.) 09(6), 1–12 (2017)

    Google Scholar 

  26. Yu, R.R., Ding, S.H., Tian, H.Q., et al.: A hierarchical constraint approach for dynamic modeling and trajectory tracking control of a mobile robot. J. Vib. Control. 28(56), 564–576 (2021)

    MathSciNet  Google Scholar 

  27. Qin, F.F., Zhao, H., Huang, K., et al.: A novel joint moments analysis approach based on Udwadia–Kalaba theory. Chin. J. Appl. Mech. 37(05): 2141–2145+2329–2330 (2020)

  28. Zhang, Y., Zhao, H., Huang, K., et al.: Position tracking control of automatic clutch based on Udwadia–Kalaba theory. Automot. Eng. 40(04), 423–430 (2018)

    Google Scholar 

  29. Zhang, S.Z., Bi, Y.F.: Analyzing dynamics of a novel parallel tracking solar device. Mech. Sci. Technol. Aerosp. Eng. 39(01), 35–40 (2020)

    Google Scholar 

  30. Han, J., Wang, P., Dong, F.F., et al.: Robust servo constrained control of parallel robots based on the udwadia-kalaba method. Appl. Math. Mech. 42(03), 264–274 (2021)

    Google Scholar 

  31. Udwadia, F.E., Wanichanon, T.: Control of uncertain nonlinear multibody mechanical systems. J. Appl. Mech. 81(4) (2014)

  32. Udwadia, F.E., Koganti, P.B., Wanichanon, T., et al.: Decentralised control of nonlinear dynamical systems. Int. J. Control 87(4), 827–843 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Udwadia, F.E., Wanichanon, T.: A closed-form approach to tracking control of nonlinear uncertain systems using the fundamental equation. Pasadena, California, United States. (2012)

  34. Wanichanon, T., Cho, H., Udwadia, F.E.: An approach to the dynamics and control of uncertain multi-body systems. Procedia IUTAM. 13, 43–52 (2015)

    Google Scholar 

  35. Cho, H., Wanichanon, T., Udwadia, F.E.: Continuous sliding mode controllers for multi-input multi-output systems. Nonlinear Dyn. 94(4), 2727–2747 (2018)

    Google Scholar 

  36. Cho, H., Udwadia, F.E., Wanichanon, T.: Autonomous precision control of satellite formation flight under unknown time-varying model and environmental uncertainties. J. Astronaut. Sci. 67(4), 1470–1499 (2020)

    Google Scholar 

  37. Udwadia, F.E.: Optimal tracking control of nonlinear dynamical systems. Proc. R. Soc. A Math. Phys. Eng. Sci. 464(2097), 2341–2363 (2008)

    MathSciNet  MATH  Google Scholar 

  38. ThanapatWanichanon, H.C.A.F.: Satellite formation-keeping using the fundamental equation in the presence of uncertainties in the system. Long Beach, California (2011)

    Google Scholar 

  39. Cho, H., Udwadia, F.E.: Explicit solution to the full nonlinear problem for satellite formation-keeping. Acta Astronaut. 67(3), 369–387 (2010)

    Google Scholar 

  40. Udwadia, F.E., Wanichanon, T., Cho, H.: Methodology for satellite formation-keeping in the presence of system uncertainties. J. Guid. Control. Dyn. 37(5), 1611–1624 (2014)

    Google Scholar 

  41. Udwadia, F.E., Phohomsiri, P.: Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics. Proc. R. Soc. A Math. Phys. Eng. Sci. 462(2071), 2097–2117 (2006)

    MathSciNet  MATH  Google Scholar 

  42. Udwadia, F.E., Wanichanon, T.: Hamel’s paradox and the foundations of analytical dynamics. Appl. Math. Comput. 217(3), 1253–1265 (2010)

    MathSciNet  MATH  Google Scholar 

  43. Udwadia, F.E.: A new perspective on the tracking control of nonlinear structural and mechanical systems. Proc. R. Soc. A Math. Phys. Eng. Sci. 459(2035), 1783–1800 (2003)

    MathSciNet  MATH  Google Scholar 

  44. Chang, S.Y., Yang, C.M., Feng, F., et al.: Dynamics modeling and simulation of industrial manipulator subject to constraint. J. Mech. Transm. 41(06), 138–142 (2017)

    Google Scholar 

  45. Han, J., Wang, F.Z., Dong, F.F., et al.: A novel trajectory tracking control of collaborative robot based on Udwadia–Kalaba theory. Modul. Mach. Tool Autom. Manuf. Tech. 2021(01), 78–83 (2021)

    Google Scholar 

  46. Tian, H.: Research on trajectory planning and coordinated control of hydraulically driven hexapod robot. Jilin University, Jilin, China (2021)

    Google Scholar 

  47. Meng, Q.D., Nan, X.Y., Zhang, Y.X.: Trajectory tracking control of manipulator based on PD type iterative learning. Modul. Mach. Tool Autom. Manuf. Tech. 2022(11), 62–65 (2022)

    Google Scholar 

Download references

Funding

This research was funded by the Provincial Natural Science Foundation of Shandong, Grant: ZR2021ME233, ZR202103040075.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Yuan.

Ethics declarations

Conflicts of interest

The authors have no relevant financial or non-financial interests to disclose and have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Tao, G., Zhang, J. et al. Foot trajectory following control of hexapod robot based on Udwadia–Kalaba theory. Nonlinear Dyn 111, 14055–14075 (2023). https://doi.org/10.1007/s11071-023-08487-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08487-7

Keywords

Navigation