Skip to main content
Log in

An analytical method for nonlinear vibration analysis of submerged tensioned anchors

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper systematically studies the nonlinear dynamic response and stability properties of the submerged tensioned anchor cable (STAC) considering the coupling effect of the parametric vibration and vortex-induced vibration. A refined and universal modeling approach for the STAC is suggested to describe the structural mechanical behavior more exactly. To ensure the calculation accuracy, we propose an improved Galerkin’s method to discretize the nonlinear motion equation of the STAC. With a self-consistent approach, we demonstrate that only the first three modes used to calculate the response will bring a lot of errors. Then, this paper answers the question of at least how many modal information should be used for dynamic analysis when employing the Galerkin’s discretization method. By performing a standard analytical framework for stability analysis of the STAC, the internal mechanism of the steady-state solution transition from unstable to stable is investigated. All the theoretical results have been well validated by numerical simulations. Results show that multi-valued area as well as the stable and unstable limit circles are observed under certain parameter combinations, no dangerous bifurcation phenomenon or chaos are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. Patel, M.H., Seyed, F.B.: Review of flexible riser modelling and analysis techniques. Eng. Struct. 17(4), 293–304 (1995)

    Google Scholar 

  2. Bachynski, E.E., Moan, T.: Design considerations for tension leg platform wind turbines. Mar. Struct. 29(1), 89–114 (2012)

    Google Scholar 

  3. Xiang, Y., et al.: Dynamic response analysis for submerged floating tunnel with anchor-cables subjected to sudden cable breakage. Mar. Struct. 59, 179–191 (2018)

    Google Scholar 

  4. Cantero, D., Rønnquist, A., Naess, A.: Tension during parametric excitation in submerged vertical taut tethers. Appl. Ocean Res. 65, 279–289 (2017)

    Google Scholar 

  5. Lin, H., Xiang, Y., Yang, Y.: Vehicle-tunnel coupled vibration analysis of submerged floating tunnel due to tether parametric excitation. Mar. Struct. 67, 102646 (2019)

    Google Scholar 

  6. El Ouni, M.H., Ben Kahla, N., Preumont, A.: Numerical and experimental dynamic analysis and control of a cable stayed bridge under parametric excitation. Eng Struct 2012(45), 244–256 (2012)

    Google Scholar 

  7. Yuan, Y., Xue, H., Tang, W.: A numerical investigation of Vortex-Induced Vibration response characteristics for long flexible cylinders with time-varying axial tension. J. Fluids Struct. 77, 36–57 (2018)

    Google Scholar 

  8. Chen, L., Basu, B., Nielsen, S.R.K.: Nonlinear periodic response analysis of mooring cables using harmonic balance method. J. Sound Vib. 438, 402–418 (2019)

    Google Scholar 

  9. Sato, M., Kanie, S., Mikami, T.: Mathematical analogy of a beam on elastic supports as a beam on elastic foundation. Appl. Math. Model. 32(5), 688–699 (2008)

    MATH  Google Scholar 

  10. Lu, W., et al.: On the slack phenomena and snap force in tethers of submerged floating tunnels under wave conditions. Mar. Struct. 24(4), 358–376 (2011)

    Google Scholar 

  11. Hall, M., Goupee, A.: Validation of a lumped-mass mooring line model with DeepCwind semisubmersible model test data. Ocean Eng. 104, 590–603 (2015)

    Google Scholar 

  12. Azcona, J., et al.: Experimental validation of a dynamic mooring lines code with tension and motion measurements of a submerged chain. Ocean Eng. 129, 415–427 (2017)

    Google Scholar 

  13. Kreuzer, E., Wilke, U.: Dynamics of mooring systems in ocean engineering. Arch. Appl. Mech. 73(3–4), 270–281 (2003)

    MATH  Google Scholar 

  14. Yiqiang, X., Chunfeng, C.: Vortex-induced dynamic response analysis for the submerged floating tunnel system under the effect of currents. J. Waterw. Port Coast. Ocean Eng. 139(3), 183–189 (2012)

    Google Scholar 

  15. Buckham, B., Driscoll, F.R., Nahon, M.: Development of a finite element cable model for use in low-tension dynamics simulation. J. Appl. Mech. 71(4), 476–485 (2004)

    MATH  Google Scholar 

  16. Cifuentes, C., et al.: Numerical simulation of the coupled dynamic response of a submerged floating tunnel with mooring lines in regular waves. Ocean Syst Eng 5(2), 109–123 (2015)

    MathSciNet  Google Scholar 

  17. Wang, K., Er, G.-K., Iu, V.P.: Nonlinear dynamical analysis of moored floating structures. Int. J. Non-Linear Mech. 98, 189–197 (2018)

    Google Scholar 

  18. Kim, B.W., et al.: Comparison of linear spring and nonlinear FEM methods in dynamic coupled analysis of floating structure and mooring system. J. Fluids Struct. 42, 205–227 (2013)

    Google Scholar 

  19. Kim, B.W., et al.: Finite Element Nonlinear Analysis for Catenary Structure Considering Elastic Deformation CMES. Comput. Model. in Eng. Sci. 63(1), 29–45 (2010)

    MATH  Google Scholar 

  20. Huang, S.: Dynamic analysis of three-dimensional marine cables. Ocean Eng. 21(6), 587–605 (1994)

    Google Scholar 

  21. Zhu, X., Yoo, W.-S.: Numerical modeling of a spar platform tethered by a mooring cable. Chinese J. Mech. Eng. 28(4), 785–792 (2015)

    Google Scholar 

  22. Zhu, X., Yoo, W.S.: Dynamic analysis of a floating spherical buoy fastened by mooring cables. Ocean Eng. 121, 462–471 (2016)

    Google Scholar 

  23. Franzini, G.R., Mazzilli, C.E.N.: Non-linear reduced-order model for parametric excitation analysis of an immersed vertical slender rod. Int. J. Non-Linear Mech. 80, 29–39 (2016)

    Google Scholar 

  24. Lei, S., et al.: Frequency domain response of a parametrically excited riser under random wave forces. J. Sound Vib. 333(2), 485–498 (2014)

    Google Scholar 

  25. Wu, X., Ge, F., Hong, Y.: A review of recent studies on vortex-induced vibrations of long slender cylinders. J. Fluids Struct. 28, 292–308 (2012)

    Google Scholar 

  26. Nakajima, T., Motora, S., Fujino, M.: On the dynamic responses of the moored object and the mooring lines in regular waves. J. Soc. Naval Architects of Japan 1981(150), 266–277 (1981)

    Google Scholar 

  27. Chen, L., Basu, B., Nielsen, S.R.: A coupled finite difference mooring dynamics model for floating offshore wind turbine analysis. Ocean Eng. 162, 304–315 (2018)

    Google Scholar 

  28. Davidson, J., Ringwood, J.V.: Mathematical modelling of mooring systems for wave Energy converters—a review. Energies 10(5), 666 (2017)

    Google Scholar 

  29. Gobat, J.I., Grosenbaugh, M.A.: A simple model for heave-induced dynamic tension in catenary moorings. Appl. Ocean Res. 23(3), 159–174 (2001)

    Google Scholar 

  30. Low, Y.M., Cheung, S.H.: On the long-term fatigue assessment of mooring and riser systems. Ocean Eng. 53, 60–71 (2012)

    Google Scholar 

  31. Fei, H., et al.: Experimental and theoretical study on cable-supporting system. Mech. Syst. Signal Process. 140, 106638 (2020)

    Google Scholar 

  32. Irvine, H.M.: Free Vibrations of Inclined Cables. J. Struct. Div. 104(2), 343–347 (1978)

    Google Scholar 

  33. Seo, S.-I., et al.: Simplified analysis for estimation of the behavior of a submerged floating tunnel in waves and experimental verification. Mar. Struct. 44, 142–158 (2015)

    Google Scholar 

  34. Dan, D., et al.: Unified modal analysis of complex cable systems via extended dynamic stiffness method and enhanced computation. Struct. Control. Health Monit. 26(10), e2435 (2019)

    Google Scholar 

  35. Fei, H., Danhui, D.: Free vibration of the complex cable system − An exact method using symbolic computation. Mech. Syst. Signal Process. 139, 106636 (2020)

    Google Scholar 

  36. Sarpkaya and Turgut: Mechanics of Wave Forces on Offshore Structures, pp. 473–563. Van Nostrand Reinhold, New York (1981)

    Google Scholar 

  37. Wilson, J.F.: Dynamics of offshore structures. John Wiley, Hoboken, New Jersey (2003)

    Google Scholar 

  38. Gopalkrishnan, R. and W. Institution, Vortex-induced forces on oscillating bluff cylinders. Ph.D. Thesis, MIT, Cambridge , 1993.

  39. Kaneko, S., Nakamura, T., Inada, F.: Flow-induced vibrations: classifications and lessons from practical experiences, 2nd edn. Academic Press, Oxford, UK (2013)

    Google Scholar 

  40. Casalotti, A., El-Borgi, S., Lacarbonara, W.: Metamaterial beam with embedded nonlinear vibration absorbers. Int. J. Non-Linear Mech. 98, 32–42 (2018)

    Google Scholar 

  41. Kong, F., Li, S., Zhou, W.: Wavelet-Galerkin approach for power spectrum determination of nonlinear oscillators. Mech. Syst. Signal Process. 48(1), 300–324 (2014)

    Google Scholar 

  42. Spanos, P.D., Di Paola, M., Failla, G.: A Galerkin Approach for Power Spectrum Determination of Nonlinear Oscillators. Meccanica 37(1), 51–65 (2002)

    MathSciNet  MATH  Google Scholar 

  43. Williams, F.W., Wittrick, W.H.: An automatic computational procedure for calculating natural frequencies of skeletal structures. Int. J. Mech. Sci. 12(9), 781–791 (1970)

    Google Scholar 

  44. Han, F., Dan, D., Cheng, W.: Extension of dynamic stiffness method to complicated damped structures. Comput. Struct. 208, 143–150 (2018)

    Google Scholar 

  45. Han, F., et al.: An improved Wittrick-Williams algorithm for beam-type structures. Compos. Struct. 204, 560–566 (2018)

    Google Scholar 

  46. Danhui, D., Bin, Xu., Hongwei, H., Xing-fei, Y.: Research on the characteristics of transverse dynamic stiffness of an inclined shallow cable[J]. J. Vib. Cont. 22(3), 1609–1610 (2016)

    MathSciNet  Google Scholar 

  47. Irvine H M . CABLE structures. The MIT Press 1988.43–84.

  48. Srinil, N., Zanganeh, H., Day, A.: Two-degree-of-freedom VIV of circular cylinder with variable natural frequency ratio: Experimental and numerical investigations[J]. Ocean Eng. 73, 179–194 (2013)

    Google Scholar 

  49. De Langre, E.: Frequency lock-in is caused by coupled-mode flutter. J. Fluids Struct. 22(6), 783–791 (2006)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Nature Science Foundation of China (Grant No.12002279); the Fundamental Research Funds for the Central Universities, NWPU (G2020KY05307)

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Fei.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix I

Appendix I

1.1 The explicit expression of K

The six unique coefficients in the dynamic stiffness matrix of Eq. (28) are defined as:

$$ k_{11}^{{}} = ps\left( {p_{{}}^{2} + s_{{}}^{2} } \right){{\left[ {\left( {1 + \varepsilon_{{}}^{2} } \right)sS + \left( {1 - \varepsilon_{{}}^{2} } \right)pC} \right]} \mathord{\left/ {\vphantom {{\left[ {\left( {1 + \varepsilon_{{}}^{2} } \right)sS + \left( {1 - \varepsilon_{{}}^{2} } \right)pC} \right]} \Delta }} \right. \kern-0pt} \Delta } $$
(85)
$$ k_{12}^{{}} = ps{{\left[ { - 2\gamma_{{}}^{2} \varepsilon + 2\left( {1 - \varepsilon_{{}}^{2} } \right)psS + \gamma_{{}}^{2} \left( {1 + \varepsilon_{{}}^{2} } \right)C} \right]} \mathord{\left/ {\vphantom {{\left[ { - 2\gamma_{{}}^{2} \varepsilon + 2\left( {1 - \varepsilon_{{}}^{2} } \right)psS + \gamma_{{}}^{2} \left( {1 + \varepsilon_{{}}^{2} } \right)C} \right]} \Delta }} \right. \kern-0pt} \Delta } $$
(86)
$$ k_{13}^{{}} = ps\left( {p_{{}}^{2} + s_{{}}^{2} } \right){{\left[ { - \left( {1 - \varepsilon_{{}}^{2} } \right)p - 2s\varepsilon S} \right]} \mathord{\left/ {\vphantom {{\left[ { - \left( {1 - \varepsilon_{{}}^{2} } \right)p - 2s\varepsilon S} \right]} \Delta }} \right. \kern-0pt} \Delta } $$
(87)
$$ k_{14}^{{}} = ps\left( {p_{{}}^{2} + s_{{}}^{2} } \right){{\left[ {\left( {1 + \varepsilon_{{}}^{2} } \right) - 2\varepsilon C} \right]} \mathord{\left/ {\vphantom {{\left[ {\left( {1 + \varepsilon_{{}}^{2} } \right) - 2\varepsilon C} \right]} \Delta }} \right. \kern-0pt} \Delta } $$
(88)
$$ k_{22}^{{}} = \left( {p^{2} + s^{2} } \right){{\left[ {p\left( {1 + \varepsilon_{{}}^{2} } \right)S - s\left( {1 - \varepsilon^{2} } \right)C} \right]} \mathord{\left/ {\vphantom {{\left[ {p\left( {1 + \varepsilon_{{}}^{2} } \right)S - s\left( {1 - \varepsilon^{2} } \right)C} \right]} \Delta }} \right. \kern-0pt} \Delta } $$
(89)
$$ k_{24}^{{}} = \left( {p_{{}}^{2} + s_{{}}^{2} } \right){{\left[ {s\left( {1 - \varepsilon_{{}}^{2} } \right) - 2p\varepsilon S} \right]} \mathord{\left/ {\vphantom {{\left[ {s\left( {1 - \varepsilon_{{}}^{2} } \right) - 2p\varepsilon S} \right]} \Delta }} \right. \kern-0pt} \Delta } $$
(90)
$$ \Delta = 4ps\varepsilon - 2ps\left( {1 + \varepsilon^{2} } \right)C + \gamma^{2} \left( {1 - \varepsilon^{2} } \right)S $$
(91)

where \(\varepsilon = {\text{e}}^{ - pl}\), \(C = \cos sl\), \(S = \sin sl\), \(\gamma = \sqrt {{{Hl^{2} } \mathord{\left/ {\vphantom {{Hl^{2} } {EI}}} \right. \kern-0pt} {EI}}}\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, H., Long, H., Zichen, D. et al. An analytical method for nonlinear vibration analysis of submerged tensioned anchors. Nonlinear Dyn 111, 11001–11022 (2023). https://doi.org/10.1007/s11071-023-08466-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08466-y

Keywords

Navigation