Skip to main content
Log in

Vibration resonance and fork bifurcation of under-damped Duffing system with fractional and linear delay terms

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we mainly study the bifurcation and resonance of under-damped Duffing systems with fractional order delay and fractional order under-damped Duffing systems with linear delay. Based on the separation method of fast and slow variables, the high-frequency excitation components in the system are eliminated, and the equivalent system of slow variables is obtained. For the under-damped Duffing system with fractional delay term, the harmonic balance method is used to solve the amplitude and phase analytic solution of the slow variable system, and for the under-damped fractional Duffing system with linear delay term, the average method is used to solve the amplitude and phase analytic solution of the slow variable system. Then the resonance and bifurcation of bistable and monostable systems with different parameters are analyzed. In the last section of this paper, numerical simulation is carried out to study the influence of fractional order, control parameters, delay quantity and other factors on the two systems, and the correctness of the analytical analysis is verified by comparing the numerical simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Shah, K., Abdeljawad, T., Ali, A.: Mathematical analysis of the Cauchy type dynamical system under piecewise equations with Caputo fractional derivative. Chaos Solitons Fractals 161, 112356 (2022)

    MathSciNet  MATH  Google Scholar 

  2. Xie, J., Wang, H., Chen, L., et al.: Dynamical analysis of fractional oscillator system with cosine excitation utilizing the average method. Math. Method Appl. Sci. 45, 1–17 (2022)

    MathSciNet  Google Scholar 

  3. Muñoz-Vázquez, A.J., Parra-Vega, V., Sánchez-Orta, A., et al.: High-gain fractional disturbance observer control of uncertain dynamical systems. J. Franklin Inst. 358(9), 4793–4806 (2021)

    MathSciNet  MATH  Google Scholar 

  4. Duc, T.M., Van Hoa, N.: Stabilization of impulsive fractional-order dynamic systems involving the Caputo fractional derivative of variable-order via a linear feedback controller. Chaos Solitons Fractals 153, 111525 (2021)

    MathSciNet  MATH  Google Scholar 

  5. Pishro, A., Shahrokhi, M., Sadeghi, H.: Fault-tolerant adaptive fractional controller design for incommensurate fractional-order nonlinear dynamic systems subject to input and output restrictions. Chaos Solitons Fractals 157, 111930 (2022)

    MathSciNet  MATH  Google Scholar 

  6. Gu, S., He, S., Wang, H., et al.: Analysis of three types of initial offset-boosting behavior for a new fractional-order dynamical system. Chaos Solitons Fractals 143, 110613 (2021)

    Google Scholar 

  7. Shahnazi-Pour, A., Moghaddam, B.P., Babaei, A.: Numerical simulation of the Hurst index of solutions of fractional stochastic dynamical systems driven by fractional Brownian motion. J. Comput. Appl. Math. 386, 113210 (2021)

    MathSciNet  MATH  Google Scholar 

  8. Razzaq, O.A., Khan, N.A., Faizan, M., et al.: Behavioral response of population on transmissibility and saturation incidence of deadly pandemic through fractional order dynamical system. Results Phys. 26, 104438 (2021)

    Google Scholar 

  9. Kumar, S., Kumar, R., Cattani, C., et al.: Chaotic behaviour of fractional predator–prey dynamical system. Chaos Solitons Fractals 135, 109811 (2020)

    MathSciNet  MATH  Google Scholar 

  10. Dabiri, A., Moghaddam, B.P., Machado, J.A.T.: Optimal variable-order fractional PID controllers for dynamical systems. J. Comput. Appl. Math. 339, 40–48 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Moghaddam, B.P., Aghili, A.: A numerical method for solving linear non-homogenous fractional ordinary differential equation. Appl. Math. Inf. Sci. 6(3), 441–445 (2012)

    MathSciNet  Google Scholar 

  12. Parsa Moghaddam, B., Dabiri, A., Mostaghim, Z.S., et al.: Numerical solution of fractional dynamical systems with impulsive effects. Int. J. Mod. Phys. C 34, 2350013 (2022)

    Google Scholar 

  13. Moghaddam, B.P., Dabiri, A., Machado, J.A.T.: Application of variable-order fractional calculus in solid mechanics. Appl. Eng. Life Soc. Sci. Part A 7, 207–224 (2019)

    MathSciNet  Google Scholar 

  14. Arfan, M., Mahariq, I., Shah, K., et al.: Numerical computations and theoretical investigations of a dynamical system with fractional order derivative. Alex. Eng. J. 61(3), 1982–1994 (2022)

    Google Scholar 

  15. Shah, K., Arfan, M., Ullah, A., et al.: Computational study on the dynamics of fractional order differential equations with applications. Chaos Solitons Fractals 157, 111955 (2022)

    MathSciNet  MATH  Google Scholar 

  16. Acay, B., Bas, E., Abdeljawad, T.: Non-local fractional calculus from different viewpoint generated by truncated M-derivative. J. Comput. Appl. Math. 366, 112410 (2020)

    MathSciNet  MATH  Google Scholar 

  17. Ullah, N., Asjad, M.I.: Dynamics behavior of solitons solutions of Chen–Lee–Liu equation using analytical techniques. J. Fract. Calculus Nonlinear Syst. 3(1), 30–45 (2022)

    Google Scholar 

  18. Guo, Y., Li, Y.: Bipartite leader-following synchronization of fractional-order delayed multilayer signed networks by adaptive and impulsive controllers. Appl. Math. Comput. 430, 127243 (2022)

    MathSciNet  MATH  Google Scholar 

  19. Wu, X., Liu, S., Wang, H.: Asymptotic stability and synchronization of fractional delayed memristive neural networks with algebraic constraints. Commun. Nonlinear Sci. 114, 106694 (2022)

    MathSciNet  MATH  Google Scholar 

  20. Syam, M.I., Sharadga, M., Hashim, I.: A numerical method for solving fractional delay differential equations based on the operational matrix method. Chaos Solitons Fractals 147, 110977 (2021)

    MathSciNet  MATH  Google Scholar 

  21. Shahmorad, S., Ostadzad, M.H., Baleanu, D.: A Tau–like numerical method for solving fractional delay integro–differential equations. Appl. Numer. Math. 151, 322–336 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Zhou, Y., Peng, L., Ahmad, B., et al.: Energy methods for fractional Navier-Stokes equations. Chaos Solitons Fractals 102, 78–85 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Alidousti, J., Eskandari, Z.: Dynamical behavior and Poincare section of fractional-order centrifugal governor system. Math. Comput. Simul. 182, 791–806 (2021)

    MathSciNet  MATH  Google Scholar 

  24. Sun, S., Liu, L.: Multiple internal resonances in nonlinear vibrations of rotating thin-walled cylindrical shells. J. Sound Vib. 510, 116313 (2021)

    Google Scholar 

  25. Usama, B.I., Morfu, S., Marquie, P.: Vibrational resonance and ghost-vibrational resonance occurrence in Chua’s circuit models with specific nonlinearities. Chaos Solitons Fractals 153, 111515 (2021)

    Google Scholar 

  26. Sawkmie, I.S., Kharkongor, D.: Theoretical and numerical study of vibrational resonance in a damped softening Duffing oscillator. Int. J. Nonlinear Mech. 144, 104055 (2022)

    Google Scholar 

  27. Gui, R., Wang, Y., Yao, Y., et al.: Enhanced logical vibrational resonance in a two-well potential system. Chaos Solitons Fractals 138, 109952 (2020)

    Google Scholar 

  28. Usama, B.I., Morfu, S., Marquié, P.: Numerical analyses of the vibrational resonance occurrence in a nonlinear dissipative system. Chaos Solitons Fractals 127, 31–37 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Peng, J., Xiang, M., Wang, L., et al.: Nonlinear primary resonance in vibration control of cable-stayed beam with time delay feedback. Mech. Syst. Signal Process. 137, 106488 (2020)

    Google Scholar 

  30. Mbong, T.L.M.D., Siewe, M.S., Tchawoua, C.: Controllable parametric excitation effect on linear and nonlinear vibrational resonances in the dynamics of a buckled beam. Commun. Nonlinear Sci. 54, 377–388 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Ren, Y., Pan, Y., Duan, F.: Generalized energy detector for weak random signals via vibrational resonance. Phys. Lett. A 382(12), 806–810 (2018)

    MathSciNet  Google Scholar 

  32. Yang, J.H., Zhu, H.: Bifurcation and resonance induced by fractional-order damping and time delay feedback in a Duffing system. Commun. Nonlinear Sci. 18(5), 1316–1326 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Rysak, A., Sedlmayr, M.: Damping efficiency of the Duffing system with additional fractional terms. Appl. Math. Model 111, 521–533 (2022)

    MathSciNet  MATH  Google Scholar 

  34. Bezziou, M., Jebril, I., Dahmani, Z.: A new nonlinear duffing system with sequential fractional derivatives. Chaos Solitons Fractals 151, 111247 (2021)

    MathSciNet  MATH  Google Scholar 

  35. Shangbin, J., Wei, J., Shuang, L., et al.: Research on detection method of multi-frequency weak signal based on stochastic resonance and chaos characteristics of Duffing system. Chin. J. Phys. 64, 333–347 (2020)

    MathSciNet  Google Scholar 

  36. Nikolić, M., Rajković, M.: Bifurcations in nonlinear models of fluid-conveying pipes supported at both ends. J. Fluids Struct. 22(2), 173–195 (2006)

    Google Scholar 

  37. Niu, J., Liu, R., Shen, Y., et al.: Stability and bifurcation analysis of single-degree-of-freedom linear vibro-impact system with fractional-order derivative. Chaos Solitons Fractals 123, 14–23 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Holmes, P.J.: Bifurcations to divergence and flutter in flow-induced oscillations: a finite dimensional analysis. J. Sound Vib. 53(4), 471–503 (1977)

    MathSciNet  MATH  Google Scholar 

  39. Xie, J., Zhao, F., He, D., et al.: Bifurcation and resonance of fractional cubic nonlinear system. Chaos Solitons Fractals 158, 112053 (2022)

    MathSciNet  MATH  Google Scholar 

  40. Shang, H., Xu, J.: Delayed feedbacks to control the fractal erosion of safe basins in a parametrically excited system. Chaos Solitons Fractals 41(4), 1880–1896 (2009)

    Google Scholar 

  41. Chen, L., Basu, B., Nielsen, S.R.K.: Nonlinear periodic response analysis of mooring cables using harmonic balance method. J. Sound Vib. 438, 402–418 (2019)

    Google Scholar 

  42. Pei, L., Chong, A.S.E., Pavlovskaia, E., et al.: Computation of periodic orbits for piecewise linear oscillator by Harmonic Balance Methods. Commun. Nonlinear Sci. 108, 106220 (2022)

    MathSciNet  MATH  Google Scholar 

  43. Bakirov, Z.B., Mikhailov, V.F.: Analysis of non-linear stochastic oscillations by the averaging method. J. Appl. Math. Mech. 78(5), 512–517 (2014)

    MathSciNet  MATH  Google Scholar 

  44. Roy, R.V.: Averaging method for strongly non-linear oscillators with periodic excitations. Int. J. Nonlinear Mech. 29(5), 737–753 (1994)

    MATH  Google Scholar 

Download references

Acknowledgements

This project is supported by National Natural Science Foundation of China (52005360, 52205404), Fundamental Research Program of Shanxi Province (202303021212293), and Scientific and Technological innovation Programs of Higher Education Institution in Shanxi (2021L403).

Author information

Authors and Affiliations

Authors

Contributions

The original authorship list: JX, RG, ZRn, DH, HX. The new authorship list: JX, RG, ZR, DH, HX. Since Dr. ZJ did not provide substantial contributions in the revised version, the revised version still retains the author order of the original submission, namely JX, RG, ZR, DH, HX. All authors have confirmed the above changes.

Corresponding authors

Correspondence to Jiaquan Xie or Rong Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Guo, R., Ren, Z. et al. Vibration resonance and fork bifurcation of under-damped Duffing system with fractional and linear delay terms. Nonlinear Dyn 111, 10981–10999 (2023). https://doi.org/10.1007/s11071-023-08462-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08462-2

Keywords

Navigation