Skip to main content
Log in

Nonlinear vibration analysis of a shallow arch coupled with an elastically constrained rigid body

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Nonlinear vibration of shallow arch-rigid body (elastically supported) coupled system is asymptotically investigated, for refined modeling of dynamic interactions involved with a complex arch structure built in weak soils (implying non-ideal foundation). Through simplifying the weakly moving arch boundary (in weak soils) as a rigid body supported by elastic springs, an arch-rigid body coupled model is proposed in a direct perturbation formulation. The arch-rigid body two-way coupling coefficients are asymptotically derived. Two important factors turn out to be quantitative measures of coupling intensity, i.e., the moment of inertia and height of rigid body, which play key roles in arch-rigid body coupled dynamics. Furthermore, nonlinear arch-rigid body primarily resonant responses are fully investigated with stability/bifurcation characteristics determined, including both hardening and softening cases. A comparative study between the coupled model and ideal (i.e., uncoupled) arch dynamics demonstrates effectiveness of the newly proposed coupled model. Besides, an arch-foundation (boundary oscillator) coupled model, as a degenerate case of the arch-rigid body coupled model, is also investigated for comparison, partially unveiling limits of the previous arch-foundation (oscillator) model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

All data in this study will be made available on the reasonable request.

References

  1. Zhao, Y., Yang, X., Liu, W., et al.: Non-linear response of cables in cable-stayed beam structure. Chin. J. Eng. Mech. 11, 153–158 (2006)

    Google Scholar 

  2. Luongo, A., Rega, G., Vestroni, F.: Planar non-linear free vibrations of an elastic cable. Int. J. Non-Linear Mech. 19, 39–52 (1984)

    Article  MATH  Google Scholar 

  3. Yi, Z., Stanciulescu, I.: Nonlinear normal modes of a shallow arch with elastic constraints for two-to-one internal resonances. Nonlinear Dyn. 83, 1577–1600 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Zhang, W., Cao, D.: Studies on bifurcation and chaos of a string-beam coupled system with two degrees-of-freedom. Nonlinear Dyn. 45, 131–147 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ding, H., Yang, Y., Chen, L., Yang, S.: Vibration of vehicle–pavement coupled system based on a Timoshenko beam on a nonlinear foundation. J. Sound Vib. 333, 6623–6636 (2014)

    Article  Google Scholar 

  6. Rega, G.: Nonlinear vibrations of suspended cables—part I: modeling and analysis. Appl. Mech. Rev. 57, 443–478 (2004)

    Article  Google Scholar 

  7. Zhao, Y., Lv, J.: Non-linear parametric vibration of cables in cable-arch composite structures. China Civ. Eng. J. 12, 67–72 (2006)

    Google Scholar 

  8. Zhao, Y., Kang, H., Jiang, L., et al.: Mechanical behavior of cable-arch structure with geometric and material nonlinear. J. Cent. South Univ. 2, 149–153 (2007)

    Google Scholar 

  9. Gattulli, V., Lepidi, M., Macdonald, J.H.G., et al.: One-to-two global-local interaction in a cable-stayed beam observed through analytical, finite element and experimental models. Int. J. Non-Linear Mech. 40, 571–588 (2005)

    Article  MATH  Google Scholar 

  10. Gattulli, V., Lepidi, M.: Nonlinear interactions in the planar dynamics of cable-stayed beam. Int. J. Solids Struct. 40, 4729–4748 (2003)

    Article  MATH  Google Scholar 

  11. Lenci, S., Ruzziconi, L.: Nonlinear phenomena in the single-mode dynamics of a cable-supported beam. Int. J. Bifurc. Chaos 19, 923–945 (2011)

    Article  MathSciNet  Google Scholar 

  12. Wei, M., Xiao, Y., Liu, H.: Bifurcation and chaos of a cable–beam coupled system under simultaneous internal and external resonances. Nonlinear Dyn. 67, 1969–1984 (2011)

    Article  MathSciNet  Google Scholar 

  13. Wang, Z., Li, T.: Nonlinear dynamic analysis of parametrically excited space cable-beam structures due to thermal loads. Eng. Struct. 83, 50–61 (2015)

    Article  Google Scholar 

  14. Drábek, P., Leinfelder, H., Tajčová, G.: Coupled string-beam equations as a model of suspension bridges. Appl. Math. 44, 97–142 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cao, D., Zhang, W.: Global bifurcations and chaotic dynamics for a string-beam coupled system. Chaos Solitons Fract. 37, 858–875 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hamed, Y.S., Sayed, M., Cao, D.X., Zhang, W.: Nonlinear study of the dynamic behavior of a string-beam coupled system under combined excitations. Acta. Mech. Sin. 27, 1034–1051 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hegazy, U.H.: 3:1 Internal resonance of a string-beam coupled system with cubic nonlinearities. Commun. Nonlinear Sci. Numer. Simul. 15, 4219–4229 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang, K., Feng, Q., Yin, Y.: Nonlinear vibration of the coupled structure of suspended-cable-stayed beam—1:2 internal resonance. Acta Mech. Solida Sin. 27, 467–476 (2014)

    Article  Google Scholar 

  19. Guo, T., Kang, H., Wang, L., Zhao, Y.: Nonlinear vibrations for double inclined cables–deck beam coupled system using asymptotic reductions. Int. J. Non-Linear Mech. 108, 33–45 (2019)

    Article  Google Scholar 

  20. Lv, J., Kang, H.: Nonlinear dynamic analysis of cable-stayed arches under primary resonance of cables. Arch. Appl. Mech. 88, 573–586 (2017)

    Article  Google Scholar 

  21. Cong, Y., Kang, H.: Planar nonlinear dynamic behavior of a cable-stayed bridge under excitation of tower motion. Eur. J. Mech. A. Solids 76, 91–107 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cong, Y., Kang, H., Guo, T.: Analysis of in-plane 1:1:1 internal resonance of a double cable-stayed shallow arch model with cables’ external excitations. Appl. Math. Mech. 40, 977–1000 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tien, W.M., Namachchivaya, N.S., Bajaj, A.K.: Non-linear dynamics of a shallow arch under periodic excitation—I.1:2 internal resonance. Int. J. Non-Linear Mech. 29, 349–366 (1994)

    Article  MATH  Google Scholar 

  24. Blair, K.B., Krousgrill, C.M., Farris, T.N.: Non-linear dynamic response of shallow arches to harmonic forcing. J. Sound Vib. 194, 353–367 (1996)

    Article  Google Scholar 

  25. Bi, Q., Dai, H.H.: Analysis of non-linear dynamics and bifurcations of a shallow arch subjected to periodic excitation with internal resonance. J. Sound Vib. 233, 553–567 (2000)

    Article  Google Scholar 

  26. Benedettini, F., Alaggio, R., Zulli, D.: Nonlinear coupling and instability in the forced dynamics of a non-shallow arch: theory and experiments. Nonlinear Dyn. 68, 505–517 (2011)

    Article  Google Scholar 

  27. Plaut, R.H.: Buckling of shallow arches with supports that stiffen when compressed. J. Eng. Mech. 116, 973–976 (1990)

    Google Scholar 

  28. Pi, Y., Bradford, M.A., Tin-Loi, F.: Nonlinear analysis and buckling of elastically supported circular shallow arches. Int. J. Solids Struct. 44, 2401–2425 (2007)

    Article  MATH  Google Scholar 

  29. Chen, J., Yang, C.: Experiment and theory on the nonlinear vibration of a shallow arch under harmonic excitation at the end. J. Appl. Mech. 74, 1061–1070 (2007)

    Article  Google Scholar 

  30. Cai, J., Feng, J.: Effect of support stiffness on stability of shallow arches. Int. J. Struct. Stab. Dyn. 10, 1099–1110 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pi, Y., Bradford, M.A.: In-plane stability of preloaded shallow arches against dynamic snap-through accounting for rotational end restraints. Eng. Struct. 56, 1496–1510 (2013)

    Article  Google Scholar 

  32. Yi, Z., Wang, L., Kang, H., Tu, G.: Modal interaction activations and nonlinear dynamic response of shallow arch with both ends vertically elastically constrained for two-to-one internal resonance. J. Sound Vib. 333, 5511–5524 (2014)

    Article  Google Scholar 

  33. Yi, Z., Wang, L., Zhao, Y.: Nonlinear dynamic behaviors of viscoelastic shallow arches. Appl. Math. Mech. 30, 771–777 (2009)

    Article  MATH  Google Scholar 

  34. Guo, T., Kang, H., Wang, L., Zhao, Y.: Elastic cables–rigid body coupled dynamics: asymptotic modeling and analysis. Nonlinear Dyn. 90, 1941–1963 (2017)

    Article  Google Scholar 

  35. Guo, T., Kang, H., Wang, L., Zhao, Y.: Cable dynamics under non-ideal support excitations: Nonlinear dynamic interactions and asymptotic modelling. J. Sound Vib. 384, 253–272 (2016)

    Article  Google Scholar 

  36. Xinhuanet, Pingnan bridge 3#, the world's largest span arch bridge, was officially completed and opened to traffic, Guangxi, China [EB/OL] (2021-01-05) [2022-07-25]. http://www.xinhuanet.com/video/2021-01/05/c_1210966298.htm

  37. Qiao, W., Guo, T., Kang, H., Zhao, Y.: An asymptotic study of nonlinear coupled vibration of arch-foundation structural system. Eur. J. Mech. A/Solids (2022) (to appear)

  38. Lacarbonara, W.: A theoretical and experimental investigation of nonlinear vibration of buckled beams. Ph.D. thesis, Virgina Tech (1997)

  39. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1993)

    MATH  Google Scholar 

  40. Qiao, W., Guo, T., Kang, H., Zhao, Y.: Softening–hardening transition in nonlinear structures with an initial curvature: a refined asymptotic analysis. Nonlinear Dyn. 107, 357–374 (2021)

    Article  Google Scholar 

  41. Nayfeh, A.H., Mook, D.K.: Nonlinear Oscillations. Wiley, New York (2008)

    MATH  Google Scholar 

  42. Theodorakopoulos, D.D., Beskos, D.E.: Dynamic pressures on a pair of rigid walls experiencing base rotation and retaining poroelastic soil. Eng. Struct. 25, 359–370 (2003)

    Article  Google Scholar 

Download references

Funding

This study is supported by National Science Foundation of China under Grant Nos. 11872176 and 11972151, and also by Guangxi Science and Technology Base and Talent Project under Grant No. 2020AC19209.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tieding Guo.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest relevant to the current article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The arch-rigid body coupled equations can be established by employing Newton's law (or extended Hamilton principle). Explicitly, for the rigid body we have:

$$ \tilde{J}\ddot{\tilde{\varphi }} + 2\tilde{\nu }\dot{\tilde{\varphi }} + \tilde{K}_{\varphi } \tilde{\varphi } = - \frac{EA}{{\tilde{l}}}\left[ {\tilde{U}\left( {\tilde{t}} \right) + \int_{0}^{{\tilde{l}}} {\tilde{y}^{\prime}\tilde{w}^{\prime}{\text{d}}\tilde{x} + \int_{0}^{{\tilde{l}}} {\frac{1}{2}\tilde{w}^{{\prime}{2}} {\text{d}}\tilde{x}} } } \right] \cdot \tilde{h} $$
(50)

After introducing scaling rules Eq. (4), and substituting them into Eq. (50), we have

$$ \begin{aligned} & J \cdot \rho Al^{3} \cdot \ddot{\varphi } \cdot \frac{{r^{2} }}{{l^{2} }} \cdot \frac{EI}{{\rho Al^{4} }} + 2J \cdot \nu \cdot \sqrt {\rho AEIl^{2} } \cdot \dot{\varphi } \cdot \frac{{r^{2} }}{{l^{2} }} \cdot \sqrt {\frac{EI}{{\rho Al^{4} }}} + K_{\varphi } \cdot \frac{EI}{l} \cdot \varphi \cdot \frac{{r^{2} }}{{l^{2} }} \\ & \quad = - \frac{EA}{l} \cdot \left[ {U \cdot \frac{{r^{2} }}{l} + \int_{0}^{1} {\left( {\frac{{ry^{\prime}}}{l} \cdot \frac{{rw^{\prime}}}{l} \cdot l} \right){\text{d}}x + \int_{0}^{1} {\left( {\frac{{rw^{\prime}}}{l} \cdot \frac{{rw^{\prime}}}{l} \cdot l} \right){\text{d}}x} } } \right] \cdot hl \\ \end{aligned} $$
(51)

leading to rigid body's dimensionless equation (i.e., Eq. (7))

$$ \ddot{\varphi } + 2\nu \dot{\varphi } + \frac{{K_{\varphi } }}{J}\varphi = - \frac{h\lambda }{J}\left[ {U + \int_{0}^{1} {\left( {y^{\prime}w^{\prime}} \right){\text{d}}x + \int_{0}^{1} {\frac{1}{2}w^{{\prime}{2}} {\text{d}}x} } } \right], \, U\left( t \right) = \varphi \left( t \right)h $$
(52)

Appendix B

The two second-order shape functions in Eq. (15), i.e., R1(x) and R2(x), are governed by the following boundary value problems (BVPs)

$$ - 4\omega_{n}^{2} R_{1} \left( x \right) + R_{1}^{(4)} \left( x \right) - y^{\prime\prime}\int_{0}^{1} {y^{\prime}} R^{\prime}_{1} \left( x \right){\text{d}}x = \Pi_{1} \left( x \right) $$
(53)
$$ R_{2}^{(4)} \left( x \right) - y^{\prime\prime}\int_{0}^{1} {y^{\prime}} R^{\prime}_{2} \left( x \right){\text{d}}x = \Pi_{2} \left( x \right) $$
(54)

with homogeneous boundary condition \(R_{n} \left( 0 \right) = R_{n} \left( 1 \right) = 0\) and \(R^{\prime}_{n} \left( 0 \right) = R^{\prime}_{n} \left( 1 \right) = 0\). The nonlinear coefficients are \(\Pi_{1} \left( x \right) = \Pi_{2} \left( x \right) = \phi^{\prime\prime}_{n} \left( x \right)\int_{0}^{1} {y^{\prime}} \phi^{\prime}_{n} \left( x \right){\text{d}}x + \frac{1}{2}y^{\prime\prime}\int_{0}^{1} {\phi_{n}^{\prime 2} \left( x \right)} {\text{d}}x\). The shape functions R1(x) and R2(x) in Eqs. (53) and (54) are then solved by modal expansion method, namely

$$ R_{1} \left( x \right) = \sum\limits_{k = 1}^{\infty } {\frac{{\phi_{k} \left( x \right)\int_{0}^{1} {\Pi_{1} \left( x \right)\phi_{k} \left( x \right){\text{d}}x} }}{{ - 4\omega_{n}^{2} + \omega_{k}^{2} }}} ,\quad R_{2} \left( x \right) = \sum\limits_{k = 1}^{\infty } {\frac{{\phi_{k} \left( x \right)\int_{0}^{1} {\Pi_{2} \left( x \right)\phi_{k} \left( x \right){\text{d}}x} }}{{\omega_{k}^{2} }}} $$
(55)

The first three linear modal frequencies and mode shape functions of arches with \(b = 1.0\) and \(b = 2.0\) are presented in Fig. 

Fig. 18
figure 18

Mode shapes, frequencies and the shape functions of typical arches with b = 1.0 and b = 2.0

18. Furthermore, typical second-order shape functions R1(x) and R2(x) are also depicted in Fig. 18. The shape functions R1(x) and R2(x) have been used in Eqs. 53 and 54.

Appendix C

The nonlinear function used in Eq. (16) is defined by

$$ \begin{aligned} \Upsilon_{1} \left( x \right) & = \frac{3}{2}\phi^{\prime\prime}_{n} \int_{0}^{1} {\phi_{n}^{\prime 2} } {\text{d}}x + \phi^{\prime\prime}_{n} \int_{0}^{1} {y^{\prime}R^{\prime}_{1} } {\text{d}}x + y^{\prime\prime}\int_{0}^{1} {\phi^{\prime}_{n} R^{\prime}_{1} } {\text{d}}x + R^{\prime\prime}_{1} \int_{0}^{1} {\phi^{\prime}_{n} y^{\prime}} {\text{d}}x \\ & \quad + 2\phi^{\prime\prime}_{n} \int_{0}^{1} {y^{\prime}R^{\prime}_{2} } {\text{d}}x + 2y^{\prime\prime}\int_{0}^{1} {\phi^{\prime}_{n} R^{\prime}_{2} } {\text{d}}x + 2R^{\prime\prime}_{2} \int_{0}^{1} {\phi^{\prime}_{n} y^{\prime}} {\text{d}}x \\ \end{aligned} $$
(56)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, W., Guo, T., Kang, H. et al. Nonlinear vibration analysis of a shallow arch coupled with an elastically constrained rigid body. Nonlinear Dyn 111, 10769–10789 (2023). https://doi.org/10.1007/s11071-023-08437-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08437-3

Keywords

Navigation