Skip to main content
Log in

A three-sub-step composite method for the analysis of rigid body rotations with Euler parameters

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a composite method for the analysis of rigid body rotations based on Euler parameters. The proposed method contains three sub-steps, wherein for keeping as much low-frequency information as possible the first two sub-steps adopt the trapezoidal rule, and the four-point backward interpolation formula is used in the last sub-step to flexibly control the amount of high-frequency dissipation. On this basis, in terms of the relation between Euler parameters and angular velocity, the stepping formulations of the proposed method are further modified for maximizing the accuracy of the angular velocity. For the analysis of rigid body rotations, the accuracy of the proposed method can converge to second-order, and the amount of its high-frequency dissipation can smoothly range from one (conservative scheme) to zero (annihilating scheme). Additionally, in the proposed method, the constraints at the displacement and velocity levels are strictly satisfied, and the numerical drifts at the acceleration level can be effectively eliminated. Furthermore, the proposed method is generalized to the field of rigid-flexible multibody systems described by Euler parameters, and in this work, its implementation procedure is provided. Several benchmark rigid body rotations and rigid-flexible multibody problems show the advantages of the proposed method in stability, accuracy, dissipation, efficiency, and energy conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Sherif, K., Nachbagauer, K., Steiner, W., Lauβ, T.: A modified HHT method for the numerical simulation of rigid body rotations with Euler parameters. Multibody Syst. Dyn. 46, 181–202 (2019)

    MathSciNet  Google Scholar 

  2. Holzinger, S., Gerstmayr, J.: Time integration of rigid bodies modelled with three rotation parameters. Multibody Syst. Dyn. 53, 345–378 (2021)

    MathSciNet  MATH  Google Scholar 

  3. Nielsen, M.B., Krenk, S.: Conservative integration of rigid body motion by quaternion parameters with implicit constraints. Int. J. Numer. Meth. Engng. 92, 734–752 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Sherif, K., Nachbagauer, K., Steiner, W.: On the rotational equations of motion in rigid body dynamics when using Euler parameters. Nonlinear Dyn. 81, 343–352 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Pappalardo, C.M., Guida, D.: On the use of two-dimensional Euler parameters for the dynamic simulation of planar rigid multibody. Arch. Appl. Mech. 87, 1647–1665 (2017)

    Google Scholar 

  6. Nikravesh, P.E., Wehage, R.A., Kwon, O.K.: Euler parameters in computational kinematics and dynamics. Part 1. J. Mech. Trans. Autom. 107, 358–365 (1985)

    Google Scholar 

  7. Terze, Z., Muller, A., Zlatar, D.: Singularity-free time integration of rotational quaternions using non-redundant ordinary differential equations. Multibody Syst. Dyn. 38, 201–225 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Betsch, P., Siebert, R.: Rigid body dynamics in terms of quaternions: Hamiltonian formulation and conserving numerical integration. Int. J. Numer. Meth. Engng. 79, 444–473 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Xu, X.M., Luo, J.H., Wu, Z.G.: The numerical influence of additional parameters of inertia representations for quaternion-based rigid body dynamics. Multibody Syst. Dyn. 49, 237–270 (2020)

    MathSciNet  MATH  Google Scholar 

  10. Bai, Q.S., Shehata, M., Nada, A.: Review study of using Euler angles and Euler parameters in multibody modeling of spatial holonomic and non-holonomic systems. Int. J. Dynam. Control 10, 1707–1725 (2022)

    MathSciNet  Google Scholar 

  11. Terze, Z., Muller, A., Zlatar, D.: Lie-group integration method for constrained multibody systems in state space. Multibody Syst. Dyn. 34, 275–305 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Younes, A.B., Turner, J.D., Mortari, D., Junkins, J.L.: A survey of attitude error representations. Number AIAA-2012–4422, Presented to AIAA/AAS Astrodynamics Specialist Conference, Minneapolis, Minnesota, USA13–16 August 2012.

  13. Pittelkau, M.E.: Rotation vector in attitude estimation. J. Guid. Control Dyn. 26, 855–860 (2003)

    Google Scholar 

  14. Verbin, D., Lappas, V.J.: Time-efficient angular steering laws for rigid satellites. J. Guid. Control Dyn. 34, 878–892 (2011)

    Google Scholar 

  15. Terze, Z., Zlatar, D., Pandza, V.: Aircraft attitude reconstruction via novel quaternion-integration procedure. Aerosp. Sci. Technol. 97, 105617 (2020)

    Google Scholar 

  16. Terze, Z., Zlatar, D., Vrdoljak, M., Pandza, V.: Lie group forward dynamics of fixed-wing aircraft with singularity-free attitude reconstruction on SO(3). J. Comput. Nonlinear Dynam. 12, 021009 (2017)

    Google Scholar 

  17. Rucker, C., Wensing, P.M.: Smooth parameterization of rigid-body inertia. IEEE Robot. Automat. Lett. 7, 2771–2778 (2022)

    Google Scholar 

  18. Tavasoli, A., Mohammadpour, O.: Dynamic modeling and adaptive robust boundary control of a flexible robotic arm with 2-dimensional rigid body rotation. Int. J. Adapt. Control Signal Process. 32, 891–907 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University, New York (1987)

    MATH  Google Scholar 

  20. Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice Hall, New Jersey (1987)

    MATH  Google Scholar 

  21. Chung, J., Hulbert, G.M.: A time integration algorithm for structural dynamics with improved numerical dissipation: the Generalized-α method. J. Appl. Mech. 60(2), 371–375 (1993)

    MathSciNet  MATH  Google Scholar 

  22. Shao, H.P., Cai, C.W.: A three parameters algorithm for numerical integration of structural dynamic equations. Chin. J. Appl. Mech. 5(4), 76–81 (1988)

    Google Scholar 

  23. Hilber, H.M., Hughes, T.J.R., Taylor, R.L.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. D. 5, 283–292 (1977)

    Google Scholar 

  24. Terze, Z., Muller, A., Zlatar, D.: An angular momentum and energy conserving Lie-group integration scheme for rigid body rotational dynamics originating from Stormer–Verlet algorithm. J. Comput. Nonlinear Dyn. 10, 051005 (2015)

    Google Scholar 

  25. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. John Wiley and Sons, Chichester (2016)

    MATH  Google Scholar 

  26. Kennedy, C.A., Carpenter, M.H.: Diagonally implicit Runge-Kutta methods for stiff ODEs. Appl. Numer. Math. 146, 221–244 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Boom, P.D., Zingg, D.W.: Optimization of high-order diagonally-implicit Runge-Kutta methods. J. Comput. Phys. 371, 168–191 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Kim, Y.J., Bouscasse, B., Seng, S., Touze, D.: Efficiency of diagonally implicit Runge-Kutta time integration schemes in incompressible two-phase flow simulations. Comput. Phys. Commun. 278, 108415 (2022)

    MathSciNet  MATH  Google Scholar 

  29. Jameson, A.: Evaluation of fully implicit Runge-Kutta schemes for unsteady flow calculations. J. Sci. Comput. 73, 819–852 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Pazner, W., Persson, P.: Stage-parallel fully implicit Runge–Kutta solvers for discontinuous Galerkin fluid simulations. J. Comput. Phys. 335, 700–717 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Ji, Y., Xing, Y.F.: A two-step time integration method with desirable stability for nonlinear structural dynamics. Eur. J. Mech. Solid. 94, 104582 (2022)

    MathSciNet  MATH  Google Scholar 

  32. Zhang, H.M., Zhang, R.S., Masarati, P.: Improved second-order unconditionally stable schemes of linear multi-step and equivalent single-step integration methods. Comput. Mech. 67, 289–313 (2021)

    MathSciNet  MATH  Google Scholar 

  33. Zhang, J.: A-stable linear two-step time integration methods with consistent starting and their equivalent single-step methods in structural dynamics analysis. Int. J. Numer. Methods Eng. 122, 2312–2359 (2021)

    MathSciNet  Google Scholar 

  34. Dong, S.: BDF-like methods for nonlinear dynamic analysis. J. Comput. Phys. 229, 3019–3045 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Dahlquist, G.G.: A special stability problem for linear multistep methods. BIT 3, 27–43 (1963)

    MathSciNet  MATH  Google Scholar 

  36. Bank, R.E., Coughran, W.M., Fichtner, W., Grosse, E.H., Rose, D.J., Smith, R.K.: Transient simulations of silicon devices and circuits. IEEE Trans. Electron Devices 32, 1992–2006 (1985)

    Google Scholar 

  37. Bathe, K.J., Baig, M.M.I.: On a composite implicit time integration procedure for nonlinear dynamics. Comput. Struct. 83, 2513–2534 (2005)

    MathSciNet  Google Scholar 

  38. Chandra, Y., Zhou, Y., Stanciulescu, I., Eason, T., Spottswood, S.: A robust composite time integration scheme for snap-through problems. Comput. Mech. 55, 1041–1056 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Wen, W.B., Wei, K., Lei, H.S., Duan, S.Y., Fang, D.N.: A novel sub-step composite implicit time integration scheme for structural dynamics. Comput. Struct. 182, 176–186 (2017)

    Google Scholar 

  40. Xing, Y.F., Ji, Y., Zhang, H.M.: On the construction of a type of composite time integration methods. Comput. Struct. 221, 157–178 (2019)

    Google Scholar 

  41. Ji, Y., Xing, Y.F.: An optimized three-sub-step composite time integration method with controllable numerical dissipation. Comput. Struct. 231, 106210 (2020)

    Google Scholar 

  42. Li, J.Z., Zhao, R., Yu, K.P., Li, X.Y.: Directly self-starting higher-order implicit integration algorithms with flexible dissipation control for structural dynamics. Comput. Methods Appl. Mech. Eng. 389, 114274 (2022)

    MathSciNet  MATH  Google Scholar 

  43. Kim, W.: An improved implicit method with dissipation control capability: the simple generalized composite time integration algorithms. Appl. Math. Model. 81, 910–930 (2020)

    MathSciNet  MATH  Google Scholar 

  44. Noh, G., Bathe, K.J.: The Bathe time integration method with controllable spectral radius: The ρ-Bathe method. Comput. Struct. 212, 299–310 (2019)

    Google Scholar 

  45. Ji, Y., Xing, Y.F.: Optimization of a class of n-sub-step time integration methods for structural dynamics. Int. J Appl. Mech. 13, 2150064 (2021)

    Google Scholar 

  46. Liu, T.H., Huang, F.L., Wen, W.B., He, X.H., Duan, S.Y., Fang, D.N.: Further insights of a composite implicit time integration scheme and its performance on linear seismic response analysis. Eng. Struct. 241, 112490 (2021)

    Google Scholar 

  47. Zhang, J.Y., Shi, L., Liu, T.H., Zhou, D., Wen, W.B.: Performance of a three-substep time integration method on structural nonlinear seismic analysis. Math. Probl. Eng. 2021, 6442260 (2021)

    Google Scholar 

  48. Ji, Y., Zhang, H., Xing, Y.F.: New insights into a three-sub-step composite method and its performance on multibody systems. Mathematics 10, 2375 (2022)

    Google Scholar 

  49. Negrut, D., Ottarsson, G., Rampalli, R., Sajdak, A.: On an implementation of the Hiber–Hughes–Taylor method in the context of index 3 differential- algebraic equations of multibody dynamics. J. Comput. Nonlinear Dynam. 2, 73–85 (2007)

    Google Scholar 

  50. Fan, W., Zhu, W.D., Ren, H.: A new singularity-free formulation of a three-dimensional Euler-Bernoulli beam using Euler parameters. J. Comput. Nonlinear Dynam. 11, 041013 (2016)

    Google Scholar 

  51. Fan, W., Ren, H., Ju, R., Zhu, W.D.: On the approximation of the full mass matrix in the rotational – coordinate -based beam formulation. J. Comput. Nonlinear Dynam. 15, 041002 (2020)

    Google Scholar 

  52. Shabana, A.A., Yakoub, R.Y.: Three dimensional absolute nodal coordinate formulation for beam elements: theory. ASME J. Mech. Design 123, 606–613 (2001)

    Google Scholar 

  53. Yakoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements implementation and applications. ASME J. Mech. Design 123, 614–621 (2001)

    Google Scholar 

  54. Betsch, P.: Energy-consistent numerical integration of mechanical systems with mixed holonomic and nonholonomic constraints. Comput. Methods Appl. Mech. Engrg. 195, 7020–7035 (2006)

    MathSciNet  MATH  Google Scholar 

  55. Betsch, P., Janz, A.: An energy-momentum consistent method for transient simulations with mixed finite elements developed in the framework of geometrically exact shells. Int. J. Numer. Meth. Engng. 108, 423–455 (2016)

    MathSciNet  Google Scholar 

  56. Xu, X.M., Luo, J.H., Feng, X.G., Peng, H.J., Wu, Z.G.: A generalized inertia representation for rigid multibody systems in terms of natural coordinates. Mech. Mach. Theory 157, 104174 (2020)

    Google Scholar 

  57. Terze, Z., Muller, A., Zlatar, D.: Lie-group integration method for constrained multibody systems in state space. Multibody System. Dyn. 34, 275–305 (2015)

    MathSciNet  MATH  Google Scholar 

  58. Bruls, O., Cardona, A.: On the use of Lie group time integrations in multibody dynamics. J. Comput. Nonlinear Dynam. 5, 031002 (2010)

    Google Scholar 

  59. Betsch, P., Sanger, N.: On the use of geometrically exact shells in a conserving framework for flexible multibody dynamics. Comput. Methods Appl. Mech. Engrg. 198, 1609–1630 (2009)

    MathSciNet  MATH  Google Scholar 

  60. Sun, J.L., Cai, Z.Z., Sun, J.H., Jin, D.P.: Dynamic analysis of a rigid-flexible inflatable space structure coupled with control moment gyroscopes. Nonlinear Dyn. (2023). https://doi.org/10.1007/s11071-023-08254-8

    Article  Google Scholar 

  61. Hsiao, K.M., Lin, J.Y., Lin, W.Y.: A consistent co-rotational finite element formulation for geometrically nonlinear dynamic analysis of 3-D beams. Comput. Methods Appl. Mech. Engrg. 169, 1–18 (1999)

    MATH  Google Scholar 

  62. Ibrahimbegovic, A., Mikdad, M.: Finite rotations in dynamics of beams and implicit time-stepping schemes. Int. J. Numer. Meth. Engng. 41, 781–814 (1998)

    MathSciNet  MATH  Google Scholar 

  63. Omar, M.A., Shabana, A.A.: A two-dimensional shear deformable beam for large rotation and deformation problems. J. Sound Vib. 243, 565–576 (2001)

    Google Scholar 

  64. Ji, Y., Xing, Y.F., Wiercigroch, M.: An unconditionally stable time integration method with controllable dissipation for second-order nonlinear dynamics. Nonlinear Dyn. 105, 3341–3358 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (12202058, 12172023, 11872090) the China Postdoctoral Science Foundation (2022M710386) and the Young Elite Scientists Sponsorship Program by BAST (BYESS2023344).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Xing.

Ethics declarations

Competing interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Implementation of the mTTBIF in rigid-flexible multibody systems

Appendix: Implementation of the mTTBIF in rigid-flexible multibody systems

The generalized coordinates q of the rigid -flexible multibody systems governed by Eq. (70) can be defined as

$$ {\varvec{q}} = \left[ {\begin{array}{*{20}c} {{\varvec{x}}^{{\text{T}}} } & {{\boldsymbol{e}}^{{\text{T}}} } \\ \end{array} } \right]^{{\text{T}}} $$
(A.1)

where x and e respectively stand for position vector and Euler parameters. Since the vector x and the vector e can be decoupled, the motion equations given in Eq. (70) can be rewritten as

$$ \left[ {\begin{array}{*{20}c} {{\overline{\varvec{M}}}\left( {\varvec{x}} \right){\ddot{\varvec{x}}} - {\overline{\varvec{Q}}}\left( {{\dot{\varvec{x}}},{\varvec{x}},t} \right)} \\ {} \\ {} \\ \end{array} } \right] + \left[ {\begin{array}{*{20}c} {} \\ {{\tilde{\varvec{M}}}\left( {\boldsymbol{e}} \right){\ddot{\varvec{e}}} - {\tilde{\varvec{Q}}}\left( {{\dot{\boldsymbol{e}}},{\boldsymbol{e}},t} \right)} \\ {} \\ \end{array} } \right] + \left[ {\begin{array}{*{20}c} {{{\varvec{\varPhi}}}_{{\varvec{x}}}^{{\text{T}}} \left( {{\varvec{x}},{\boldsymbol{e}}} \right){{\varvec{\lambda}}}} \\ {{{\varvec{\varPhi}}}_{{\boldsymbol{e}}}^{{\text{T}}} \left( {{\varvec{x}},{\boldsymbol{e}}} \right){{\varvec{\lambda}}}} \\ {{{\varvec{\varPhi}}}\left( {{\varvec{x}},{\boldsymbol{e}}} \right)} \\ \end{array} } \right] = {\boldsymbol{0}} $$
(A.2)

When using the mTTBIF, the components of q with the Euler parameters are computed by

$$ \left\{ \begin{gathered} {\boldsymbol{e}}_{t + \gamma \Delta t} = {\boldsymbol{e}}_{t} + \gamma \Delta t{\dot{\boldsymbol{e}}}_{t} + 0.25\gamma^{2} \Delta t^{2} \left( {{\ddot{\varvec{e}}}_{t} + {\ddot{\varvec{e}}}_{t + \gamma \Delta t} } \right) \hfill \\ {\dot{\boldsymbol{e}}}_{t + \gamma \Delta t} = {\boldsymbol{L}}_{t + \gamma \Delta t}^{{\text{T}}} \left( {{\boldsymbol{L}}_{t} {\dot{\boldsymbol{e}}}_{t} + 0.5\gamma \Delta t\left( {{\boldsymbol{L}}_{t} {\ddot{\varvec{e}}}_{t} + {\boldsymbol{L}}_{t + \gamma \Delta t} {\ddot{\varvec{e}}}_{t + \gamma \Delta t} } \right)} \right) \hfill \\ \end{gathered} \right. $$
(A.3)
$$ \left\{ \begin{gathered} {\boldsymbol{e}}_{t + 2\gamma \Delta t} = {\boldsymbol{e}}_{t + \gamma \Delta t} + \gamma \Delta t{\dot{\boldsymbol{e}}}_{t + \gamma \Delta t} + 0.25\gamma^{2} \Delta t^{2} \left( {{\ddot{\varvec{e}}}_{t + \gamma \Delta t} + {\ddot{\varvec{e}}}_{t + 2\gamma \Delta t} } \right) \hfill \\ {\dot{\boldsymbol{e}}}_{t + 2\gamma \Delta t} = {\boldsymbol{L}}_{t + 2\gamma \Delta t}^{{\text{T}}} \left( {{\boldsymbol{L}}_{t + \gamma \Delta t} {\dot{\boldsymbol{e}}}_{t + \gamma \Delta t} + 0.5\gamma \Delta t\left( {{\boldsymbol{L}}_{t + \gamma \Delta t} {\ddot{\varvec{e}}}_{t + \gamma \Delta t} + {\boldsymbol{L}}_{t + 2\gamma \Delta t} {\ddot{\varvec{e}}}_{t + 2\gamma \Delta t} } \right)} \right) \hfill \\ \end{gathered} \right. $$
(A.4)
$$ \left\{ \begin{gathered} {\boldsymbol{e}}_{t + \Delta t} = {\boldsymbol{e}}_{t} + \Delta t\left[ {\left( {\theta_{0} + \theta_{3} } \right){\dot{\boldsymbol{e}}}_{t} + \theta_{1} {\dot{\boldsymbol{e}}}_{t + \gamma \Delta t} + \theta_{2} {\dot{\boldsymbol{e}}}_{t + 2\gamma \Delta t} + \theta_{3} \Delta t\left( {\theta_{0} {\ddot{\varvec{e}}}_{t} + \theta_{1} {\ddot{\varvec{e}}}_{t + \gamma \Delta t} + \theta_{2} {\ddot{\varvec{e}}}_{t + 2\gamma \Delta t} + \theta_{3} {\ddot{\varvec{e}}}_{t + \Delta t} } \right)} \right] \hfill \\ {\dot{\boldsymbol{e}}}_{t + \Delta t} = {\boldsymbol{L}}_{t + \Delta t}^{{\text{T}}} \left[ {{\boldsymbol{L}}_{t} {\dot{\boldsymbol{e}}}_{t} + \Delta t\left( {\theta_{0} {\boldsymbol{L}}_{t} {\ddot{\varvec{e}}}_{t} + \theta_{1} {\boldsymbol{L}}_{t + \gamma \Delta t} {\ddot{\varvec{e}}}_{t + \gamma \Delta t} + \theta_{2} {\boldsymbol{L}}_{t + 2\gamma \Delta t} {\ddot{\varvec{e}}}_{t + 2\gamma \Delta t} + \theta_{3} {\boldsymbol{L}}_{t + \Delta t} {\ddot{\varvec{e}}}_{t + \Delta t} } \right)} \right] \hfill \\ \end{gathered} \right. $$
(A.5)

and the remaining components of q are calculated by the classical TTBIF [41].

In the calculations, the increments of the three sub-steps can be obtained by the Newton–Raphson method in a uniform form, as follows:

$$ {\varvec{G}}_{\tau } \left( {\begin{array}{*{20}c} {\Delta {\ddot{\varvec{x}}}} \\ {\Delta {\ddot{\varvec{e}}}} \\ {\Delta \lambda } \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} {{\overline{\varvec{M}}}\left( {\varvec{x}} \right){\ddot{\varvec{x}}} + {{\varvec{\varPhi}}}_{{\varvec{x}}}^{{\text{T}}} \left( {{\varvec{x}},{\boldsymbol{e}}} \right){{\varvec{\lambda}}} - {\overline{\varvec{Q}}}\left( {{\dot{\varvec{x}}},{\varvec{x}},\tau } \right)} \\ {{\tilde{\varvec{M}}}\left( {\boldsymbol{e}} \right){\ddot{\varvec{e}}} + {{\varvec{\varPhi}}}_{{\boldsymbol{e}}}^{{\text{T}}} \left( {{\varvec{x}},{\boldsymbol{e}}} \right){{\varvec{\lambda}}} - {\tilde{\varvec{Q}}}\left( {{\dot{\boldsymbol{e}}},{\boldsymbol{e}},\tau } \right)} \\ {{{\varvec{\varPhi}}}\left( {{\varvec{x}},{\boldsymbol{e}}} \right)} \\ \end{array} } \right)_{\tau } $$
(A.6)

where τ = t + γΔt, t + 2γΔt, or t + Δt, and the Jacobian matrix Gτ has the form as

$$ {\varvec{G}}_{\tau } = \left( {\begin{array}{*{20}c} {{\overline{\varvec{M}}} - \frac{{\partial {\overline{\varvec{Q}}}}}{{\partial {\dot{\varvec{x}}}}}\frac{{\partial {\dot{\varvec{x}}}}}{{\partial {\ddot{\varvec{x}}}}} + \left( {\frac{{\partial {\overline{\varvec{M}}}}}{{\partial {\varvec{x}}}}{\ddot{\varvec{x}}} + \frac{{\partial {{\varvec{\varPhi}}}_{{\varvec{x}}}^{{\text{T}}} }}{{\partial {\varvec{x}}}}{{\varvec{\lambda}}} - \frac{{\partial {\overline{\varvec{Q}}}}}{{\partial {\varvec{x}}}}} \right)\frac{{\partial {\varvec{x}}}}{{\partial {\ddot{\varvec{x}}}}}} & {} & {{{\varvec{\varPhi}}}_{{\varvec{x}}}^{{\text{T}}} } \\ {} & {{\tilde{\varvec{M}}} - \frac{{\partial {\tilde{\varvec{Q}}}}}{{\partial {\dot{\boldsymbol{e}}}}}\frac{{\partial {\dot{\boldsymbol{e}}}}}{{\partial {\ddot{\varvec{e}}}}} + \left( {\frac{{\partial {\tilde{\varvec{M}}}}}{{\partial {\boldsymbol{e}}}}{\ddot{\varvec{e}}} + \frac{{\partial {{\varvec{\varPhi}}}_{{\varvec{x}}}^{{\text{T}}} }}{{\partial {\boldsymbol{e}}}}{{\varvec{\lambda}}} - \frac{{\partial {\tilde{\varvec{Q}}}}}{{\partial {\boldsymbol{e}}}}} \right)\frac{{\partial {\boldsymbol{e}}}}{{\partial {\ddot{\varvec{e}}}}}} & {{{\varvec{\varPhi}}}_{{\boldsymbol{e}}}^{{\text{T}}} } \\ {{{\varvec{\varPhi}}}_{{\varvec{x}}}^{{}} \frac{{\partial {\varvec{x}}}}{{\partial {\ddot{\varvec{x}}}}}} & {{{\varvec{\Phi}}}_{{\boldsymbol{e}}}^{{}} \frac{{\partial {\boldsymbol{e}}}}{{\partial {\ddot{\varvec{e}}}}}} & {} \\ \end{array} } \right) $$
(A.7)

Furthermore, if the motions of flexible bodies are described by the singularity-free elements [50, 51], the generalized coordinate vector q = e only includes Euler parameters and the motion equations governed by Eq. (70) become

$$ \left\{ \begin{gathered} {\varvec{M}}\left( {\varvec{e}} \right){{\ddot{\varvec{e}}}} + {{\varvec{\varPhi}}}_{{\varvec{e}}}^{{\text{T}}} \left( {\varvec{e}} \right){{\varvec{\uplambda}}} = {\varvec{Q}}\left( {{\dot{\varvec{e}}},{\varvec{e}},t} \right) \hfill \\ {{\varvec{\varPhi}}}\left( {{\varvec{e}},t} \right) = {\varvec{0}} \hfill \\ \end{gathered} \right. $$
(A.8)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Y., Xing, Y. A three-sub-step composite method for the analysis of rigid body rotations with Euler parameters. Nonlinear Dyn 111, 14309–14333 (2023). https://doi.org/10.1007/s11071-023-08410-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08410-0

Keywords

Navigation