Skip to main content
Log in

Data-driven modeling for the dynamic behavior of nonlinear vibratory systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Accurate modeling of the mapping relationship between the external excitation and the dynamic behavior of nonlinear vibratory systems is the basis for structure design, control, and optimization of vibratory systems. However, modeling the dynamic behavior of nonlinear vibratory systems with either approximate theoretical methods or numerical simulation is difficult and time-consuming due to the randomness of external excitations forced in the nonlinear vibratory systems. In the paper, an accurate and efficient model for predicting the dynamic behavior of the nonlinear vibratory system is proposed based on data-driven technology. Firstly, the datasets, consisting of the training data and validation data of the data-driven model, are obtained by traditional quantitative analysis methods, simulation approaches, or vibration tests. Then, the dependency features between the training data are extracted through a gated recurrent unit (GRU). The mapping relationship between the dependency features and the dynamic behavior of the nonlinear vibratory system is constructed through the fully connected layer. Finally, the accuracy of the established data-driven model is assessed by three evaluation metrics (the maximum error, root-mean-square error, and goodness-of-fit index) of the machine learning. The effectiveness of the proposed data-driven model is verified through two examples, a single-degree-of-freedom Duffing equation, and a double-layer X-type vibration isolation system. The results indicate that the GRU data-driven model, which is highly consistent with the theoretical and numerical values, has high accuracy, effectiveness, and stability in identifying the dynamic behavior of nonlinear vibratory systems. The established data-driven model probably has potential applications for modeling impact isolation, vibration damage detection, and microscopic techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Rao, S.S.: Mechanical Vibrations. Person Education Inc., London (2018)

    Google Scholar 

  2. Thothadri, M., Casas, R.A., Moon, F.C., D’Andrea, R., Johnson, C.R.: Nonlinear system identification of multi-degree-of-freedom systems. Nonlinear Dyn. 32(3), 307–322 (2003). https://doi.org/10.1023/A:1024489210804

    Article  MathSciNet  MATH  Google Scholar 

  3. Cai, J.P., Wu, X.F., Li, Y.P.: An equivalent nonlinearization method for strongly nonlinear oscillations. Mech. Res. Commun. 32(5), 553–560 (2005). https://doi.org/10.1016/j.mechrescom.2004.10.004

    Article  MATH  Google Scholar 

  4. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillation. John Wiley and Sons Inc., New York (1979)

    MATH  Google Scholar 

  5. Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on computational intelligence for identification of nonlinear dynamical systems. Nonlinear Dyn. 99(2), 1709–1761 (2020). https://doi.org/10.1007/s11071-019-05430-7

    Article  MATH  Google Scholar 

  6. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag Inc., Berlin (1993)

    MATH  Google Scholar 

  7. Moreno-Ahedo, L., Diarte-Acosta, S.: Stability analysis of linear systems with switchable stiffness using the Floquet theory. J. Vib. Control 25(5), 963–976 (2019). https://doi.org/10.1177/1077546318811419

    Article  MathSciNet  Google Scholar 

  8. La-orpacharapan, C., Pao, L.: Fast and robust control of systems with multiple flexible modes. IEEE-ASME Trans. Mechatron. 10(5), 521–534 (2005). https://doi.org/10.1109/TMECH.2005.856217

    Article  Google Scholar 

  9. Ding, Y., Zhu, L.M., Ding, H.: A wavelet-based approach for stability analysis of periodic delay-differential systems with discrete delay. Nonlinear Dyn. 79(2), 1049–1059 (2015). https://doi.org/10.1007/s11071-014-1722-5

    Article  MathSciNet  Google Scholar 

  10. Patel, V.N., Tandon, N., Pandey, R.K.: Defect detection in deep groove ball bearing in presence of external vibration using envelope analysis and Duffing oscillator. Measurement 45(5), 960–970 (2012). https://doi.org/10.1016/j.measurement.2012.01.047

    Article  Google Scholar 

  11. Strogatz, S.H.: Nonlinear Dynamic and Chaos. Westview Press Inc., Boulder (2015)

    MATH  Google Scholar 

  12. Du, H.E., Er, G.K., Lu, V.P.: Parameter-splitting perturbation method for the improved solutions to strongly nonlinear systems. Nonlinear Dyn. 96(3), 1847–1863 (2019). https://doi.org/10.1007/s11071-019-04887-w

    Article  MATH  Google Scholar 

  13. Clementi, F., Demeio, L., Mazzilli, C.E.N.: Nonlinear vibrations of non-uniform beams by the MTS asymptotic expansion method. Contin. Mech. Thermodyn. 27(4–5), 703–717 (2015). https://doi.org/10.1007/s00161-014-0368-3

    Article  MathSciNet  MATH  Google Scholar 

  14. Djemal, F., Chaari, F., Dion, J.L., Renaud, F., Tawfiq, I., Haddar, M.: Asymptotic numerical method for the dynamic study of nonlinear vibration absorbers. Int. J. Appl. Mech. 6(5), 1450053 (2014). https://doi.org/10.1142/S1758825114500537

    Article  Google Scholar 

  15. Yan, Y., Wang, W.Q., Zhang, L.X.: Applied multiscale method to analysis of nonlinear vibration for double-walled carbon nanotubes. Appl. Math. Model. 35(5), 2279–2289 (2011). https://doi.org/10.1016/j.apm.2010.11.035

    Article  MathSciNet  MATH  Google Scholar 

  16. Aminikhah, H., Tahmasebi, M., Roozbahani, M.M.: The multi-scale method for solving nonlinear time space fractional partial differential equations. IEEE-CAA J. Automatica Sinica 6(1), 299–306 (2019). https://doi.org/10.1109/JAS.2016.7510058

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, Y., Chen, G.P., Tan, X.: Dynamic analysis of the nonlinear energy sink with local and global potentials: geometrically nonlinear damping. Nonlinear Dyn. 101(4), 2157–2180 (2020). https://doi.org/10.1007/s11071-020-05876-0

    Article  Google Scholar 

  18. Dou, S.G., Jensen, J.S.: Optimization of nonlinear structural resonance using the incremental harmonic balance method. J. Sound Vib. 334, 239–254 (2015). https://doi.org/10.1016/j.jsv.2014.08.023

    Article  Google Scholar 

  19. Bathe, K.: Finite Element Method. John Wiley & Sons Inc., New York (2000)

    Google Scholar 

  20. Zhang, Y., Sun, W., Yang, J., Han, Q.K.: Nonlinear vibration analysis of a hard-coating cylindrical shell with elastic constraints by finite element method. Nonlinear Dyn. 90(4), 2879–2891 (2017). https://doi.org/10.1007/s11071-017-3849-7

    Article  Google Scholar 

  21. Zheng, S.J., Chen, D.J., Wang, H.T.: Size dependent nonlinear free vibration of axially functionally graded tapered microbeams using finite element method. Thin-Walled Struct. 139, 46–52 (2019). https://doi.org/10.1016/j.tws.2019.02.033

    Article  Google Scholar 

  22. Yan, D.L., Wang, W.Y., Chen, Q.J.: Fractional-order modeling and nonlinear dynamic analyses of the rotor-bearing-seal system. Chaos Solitons Fractals 133, 109640 (2020). https://doi.org/10.1016/j.chaos.2020.109640

    Article  MathSciNet  MATH  Google Scholar 

  23. Lu, Z.Q., Zhao, L., Ding, H., Chen, L.Q.: A dual-functional metamaterial for integrated vibration isolation and energy harvesting. J. Sound Vib. 509, 116251 (2021). https://doi.org/10.1016/j.jsv.2021.116251

    Article  Google Scholar 

  24. Chung, J., Gulcehre, C., Cho, K.H., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. In: NIPS 2014 Workshop on Deep Learning, 2014. https://doi.org/10.48550/arXiv.1412.3555.

  25. Rafiee, J., Arvani, F., Harifi, A., Sadeghi, M.H.: Intelligent condition monitoring of a gearbox using artificial neural network. Mech. Syst. Signal Process. 21(4), 1746–1754 (2007). https://doi.org/10.1016/j.ymssp.2006.08.005

    Article  Google Scholar 

  26. Hüsken, M., Stagge, P.: Recurrent neural networks for time series classification. Neurocomputing 50, 223–235 (2003). https://doi.org/10.1016/S0925-2312(01)00706-8

    Article  MATH  Google Scholar 

  27. Yu, L.H., Qiu, Z.C., Zhang, X.M.: Radial basis function neural network vibration control of a flexible planar parallel manipulator based on acceleration feedback. J. Vib. Control 28(3–4), 351–363 (2022). https://doi.org/10.1177/1077546320977400

    Article  MathSciNet  Google Scholar 

  28. Bobylev, D., Choudhury, T., Miettinen, J., Viitala, R., Kurvinen, E., Sopanen, J.: Simulation-based transfer learning for support stiffness identification. IEEE Access 9, 120652–120664 (2021). https://doi.org/10.1109/ACCESS.2021.3108414

    Article  Google Scholar 

  29. Hou, R.R., Xia, Y.: Review on the new development of vibration-based damage identification for civil engineering structures: 2010–2019. J. Sound Vib. 491, 115741 (2020). https://doi.org/10.1016/j.jsv.2020.115741

    Article  Google Scholar 

  30. Liu, R.X., Dobriban, E., Hou, Z.C., Qian, K.: dynamic load identification for mechanical systems: a review. Arch. Comput. Methods Eng. 29(2), 831–863 (2021). https://doi.org/10.1007/s11831-021-09594-7

    Article  MathSciNet  Google Scholar 

  31. Azimi, M., Eslamlou, A.D., Pekcan, G.: Data-driven structural health monitoring and damage detection through deep learning: state-of-the-art review. Sensors 20(10), 2778 (2020). https://doi.org/10.3390/s20102778

    Article  Google Scholar 

  32. Lu, Z.Q., Wu, D., Ding, H., Chen, L.Q.: Vibration isolation and energy harvesting integrated in a Stewart platform with high static and low dynamic stiffness. Appl. Math. Model. 89(1), 249–267 (2020). https://doi.org/10.1016/j.apm.2020.07.060

    Article  MathSciNet  MATH  Google Scholar 

  33. Xu, W., Kevin, J.M., Kevin, M.S.: A data-driven model for nonlinear marine dynamics. Ocean Eng. 236, 109469 (2021). https://doi.org/10.1016/j.oceaneng.2021.109469

    Article  Google Scholar 

  34. Merrienboer, B.V., Culcehre, G., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. Comput. Sci. (2014). https://doi.org/10.3115/v1/D14-1179

    Article  Google Scholar 

  35. Szoplik, J.: Forecasting of natural gas consumption with artificial neural networks. Energy 85, 208–220 (2015). https://doi.org/10.1016/j.energy.2015.03.084

    Article  Google Scholar 

  36. Yu, Y., Si, X.S., Hu, C.H., Zhang, J.X.: A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 31(7), 1235–1270 (2019). https://doi.org/10.1162/neco_a_01199

    Article  MathSciNet  MATH  Google Scholar 

  37. Mustaqeem, Kwon, S.: A CNN-assisted enhanced audio signal processing for speech emotion recognition. Sensors 20(1) (2020). https://doi.org/10.3390/s20010183

  38. Chen, J.D., Chen, J.X., Zhang, D.F., Sun, Y.D., Nanehkaran, Y.A.: Using deep transfer learning for image-based plant disease identification. Comput. Electron. Agric. 173, 105393 (2020). https://doi.org/10.1016/j.compag.2020.105393

    Article  Google Scholar 

  39. Carleo, G., Troyer, M.: Solving the quantum many-body problem with artificial neural networks. Science 355(6325), 602–605 (2017). https://doi.org/10.1126/science.aag2302

    Article  MathSciNet  MATH  Google Scholar 

  40. Chen, J.L., Jing, H.J., Chang, Y.H., Liu, Q.: Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process. Reliab. Eng. Syst. Saf. 185, 372–382 (2019). https://doi.org/10.1016/j.ress.2019.01.006

    Article  Google Scholar 

  41. Marugan, A.P., Marquez, F.P.G., Perez, J.M.P., Ruiz-Hernandez, D.: A survey of artificial neural network in wind energy systems. Appl. Energy 228, 1822–1836 (2018). https://doi.org/10.1016/j.apenergy.2018.07.084

    Article  Google Scholar 

  42. Gue, I.H.V., Ubando, A.T., Tseng, M.L., Tan, R.R.: Artificial neural networks for sustainable development: a critical review. Clean Technol. Environ. Policy 22(7), 1449–1465 (2020). https://doi.org/10.1007/s10098-020-01883-2

    Article  Google Scholar 

  43. Hochreiter, S., Schmidhuber, J.: long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  44. Hua, Y.X., Zhao, Z.F., Li, R.P., Chen, X.F., Liu, Z.M., Zhang, H.G.: Deep learning with long short-term memory for time series Prediction. IEEE Commun. Mag. 57(6), 114–119 (2019). https://doi.org/10.1109/MCOM.2019.1800155

    Article  Google Scholar 

  45. Yu, Y.H., Yao, G., Wu, Z.H.: Nonlinear primary responses of a bilateral supported X-shape vibration reduction structure. Mech. Syst. Signal Process. 140, 1066 (2020). https://doi.org/10.1016/j.ymssp.2020.106679

    Article  Google Scholar 

Download references

Funding

The work was supported by National Natural Science Foundation of China [Grant Numbers 51975110, U22B2087]; Fundamental Research Funds for the Central Universities [Grant Numbers N2003005, N2203004]. The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

Huizhen Liu contributed to conceptualization, methodology, software, writing—original draft preparation. Chenying Zhao done writing—original draft preparation and writing—reviewing and editing. Xianzhen Huang was involved in investigation, resources, writing—reviewing and editing, and funding acquisition. Guo Yao did writing—reviewing and editing. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xianzhen Huang or Guo Yao.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Zhao, C., Huang, X. et al. Data-driven modeling for the dynamic behavior of nonlinear vibratory systems. Nonlinear Dyn 111, 10809–10834 (2023). https://doi.org/10.1007/s11071-023-08404-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08404-y

Keywords

Navigation