Skip to main content
Log in

Parameter-splitting perturbation method for the improved solutions to strongly nonlinear systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A procedure named parameter-splitting perturbation method for improving the perturbation solutions to the forced vibrations of strongly nonlinear oscillators is proposed. The idea of the proposed procedure is presented in general first. After that, it is applied to optimize the solutions obtained by the multiple-scales method which is one of well-known perturbation methods. The harmonically forced Duffing oscillator, the harmonically forced oscillator with both nonlinear restoring force and nonlinear inertial force, the harmonically forced purely nonlinear oscillator and harmonically forced two-degree-of-freedom system with cubic nonlinearity are analyzed in various cases to show the advantages of the proposed method. The ratio of nonlinear stiffness coefficient to linear stiffness coefficient is chosen to be larger than one to highlight the validity of the propose method when dealing with strongly nonlinear oscillators. The validity of the proposed procedure is examined by comparing the frequency–response curves obtained by the proposed method, conventional multiple-scales method and numerical continuation method. Moreover, the errors corresponding to the results obtained by multiple-scales method are compared with those obtained by the proposed method to examine the performance of the proposed method. The results show that the proposed method can give much improved solutions in comparison with those obtained by multiple-scales method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, Hoboken (2008)

    MATH  Google Scholar 

  2. Hermann, M., Saravi, M.: Nonlinear Ordinary Differential Equations. Springer, Chennai (2016)

    MATH  Google Scholar 

  3. Nayfeh, A.H.: Perturbation Methods. Wiley, Hoboken (2008)

    Google Scholar 

  4. Adomian, G.: Nonlinear Stochastic Operator Equations. Academic Press, New York (1986)

    MATH  Google Scholar 

  5. Adomian, G.: A review of the decomposition method in applied mathematics. J. Math. Anal. Appl. 135(2), 501–544 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lesnic, D.: The decomposition method for forward and backward time-dependent problems. J. Comput. Appl. Math. 147(1), 27–39 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ghalambaz, M., Ghalambaz, M., Edalatifar, M.: A new analytic solution for buckling of doubly clamped nano-actuators with integro differential governing equation using Duan-Rach Adomian decomposition method. Appl. Math. Model. 40(15–16), 7293–7302 (2016)

    Article  MathSciNet  Google Scholar 

  8. Moradweysi, P., Ansari, R., Hosseini, K., Sadeghi, F.: Application of modified Adomian decomposition method to pull-in instability of nano-switches using nonlocal Timoshenko beam theory. Appl. Math. Model. 54, 594–604 (2018)

    Article  MathSciNet  Google Scholar 

  9. Liao, S.J.: The proposed homotopy analysis technique for the solution of nonlinear problems. Ph.D. thesis, Shanghai Jiao Tong University (1992)

  10. Liao, S.J.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. CRC Press, New York (2003)

    Book  Google Scholar 

  11. Liao, S.J.: Notes on the homotopy analysis method: some definitions and theorems. Commun. Nonlinear Sci. 14(4), 983–997 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Tajaddodianfar, F., Yazdi, M.R.H., Pishkenari, H.N.: Nonlinear dynamics of MEMS/NEMS resonators: analytical solution by the homotopy analysis method. Commun. Microsyst. Technol. 23(6), 1913–1926 (2017)

    Article  Google Scholar 

  13. Odibat, Z.M.: A study on the convergence of homotopy analysis method. Appl. Math. Comput. 217(2), 782–789 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Baily, E.M.: Steady-state harmonic analysis of nonlinear networks. Ph.D. thesis, Stanford University (1968)

  15. Lindenlaub, J.C.: An approach for finding the sinusoidal steady state response of nonlinear systems. In: 7th Annual Allerton Conference on Circuit and System Theory, Chicago (1969)

  16. Wu, B.S., Lim, C.W., Ma, Y.F.: Analytical approximation to large-amplitude oscillation of a non-linear conservative system. Int. J. Nonlinear Mech. 38(7), 1037–1043 (2003)

    Article  MATH  Google Scholar 

  17. Wu, B.S., Lim, C.W., Sun, W.P.: Improved harmonic balance approach to periodic solutions of non-linear jerk equations. Phys. Lett. A. 354(1), 95–100 (2006)

    Article  Google Scholar 

  18. Lai, S.K., Lim, C.W., Wu, B.S., Wang, C., Zeng, Q.C., He, X.F.: Newton-harmonic balancing approach for accurate solutions to nonlinear cubic-quintic Duffing oscillators. Appl. Math. Model. 33(2), 852–866 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, S., Hua, L., Yang, C., Zhang, Y., Tan, X.: Nonlinear vibrations of a piecewise-linear quarter-car truck model by incremental harmonic balance method. Nonlinear Dyn. 92, 1719–1732 (2018)

    Article  Google Scholar 

  20. Dai, Y.H., Wang, X.C., Schnoor, M., Atluri, S.N.: Analysis of internal resonance in a two-degree-of-freedom nonlinear dynamical system. Commun. Nonlinear Sci. Numer. Simul. 49, 176–191 (2017)

    Article  MathSciNet  Google Scholar 

  21. Burton, T.D., Rahman, Z.: On the multi-scale analysis of strongly non-linear forced oscillators. Int. J. Nonlinear Mech. 21(2), 135–146 (1986)

    Article  MATH  Google Scholar 

  22. Cheung, Y.K., Chen, S.H., Lau, S.L.: A modified Lindstedt–Poincaré method for certain strongly non-linear oscillators. Int. J. Nonlinear Mech. 26(3–4), 367–378 (1991)

    Article  MATH  Google Scholar 

  23. Chen, S.H., Shen, J.H., Sze, K.Y.: A new perturbation procedure for limit cycle analysis in three-dimensional nonlinear autonomous dynamical systems. Nonlinear Dyn. 56(3), 256–268 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Hu, H., Xiong, Z.G.: Comparison of two Lindstedt–Poincaré-type perturbation methods. J. Sound Vib. 278(1), 437–444 (2004)

    Article  MATH  Google Scholar 

  25. Pakdemirli, M., Karahan, M.M.F., Boyacı, H.: A new perturbation algorithm with better convergence properties: multiple scales Lindstedt Poincare method. Math. Comput. Appl. 14(1), 31–44 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Pakdemirli, M., Karahan, M.M.F., Boyacı, H.: Forced vibrations of strongly nonlinear systems with multiple scales Lindstedt Poincare method. Math. Comput. Appl. 16(4), 879–889 (2011)

    MathSciNet  Google Scholar 

  27. Wu, B.S., Zhou, Y., Lim, C.W., Sun, W.: Analytical approximations to resonance response of harmonically forced strongly odd nonlinear oscillators. Arch. Appl. Mech. 88, 2123–2134 (2018)

    Article  Google Scholar 

  28. Bellman, R.: Methods of Nonlinear Analysis. Academic Press, New York (1970)

    MATH  Google Scholar 

  29. Geer, J.F., Andersen, C.M.: A hybrid perturbation-Galerkin technique that combines multiple expansions. SIAM J. Appl. Math. 50(5), 1474–1495 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. Andersen, C.M., Geer, J.F.: Investigating a hybrid perturbation-Galerkin technique using computer algebra. J. Symb. Comput. 12, 695–714 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. Andrianov, I.V., Awrejcewicz, J., Manevitch, L.I.: Asymptotical Mechanics of Thin-Walled Structures: A Handbook. Springer, Berilin (2004)

    Book  Google Scholar 

  32. Krauskopf, B., Osinga, H.M., Galán, V.J.: Numerical Ccontinuation Methods for Dynamical Systems. Springer, Dordrecht (2007)

    Book  Google Scholar 

  33. Meijer, H.: Matcont tutorial: ODE GUI version. http://wwwhome.math.utwente.nl/~meijerhge/MT_instructions.pdf (2016). Accessed 20 Aug 2017

  34. Nayfeh, A.H.: A perturbation method for treating nonlinear oscillation problems. Stud. Appl. Math. 44(1–4), 368–374 (1965)

    MathSciNet  MATH  Google Scholar 

  35. Alijani, F., Amabili, M., Bakhtiari-Nejad, F.: On the accuracy of the multiple scales method for non-linear vibrations of doubly curved shallow shells. Int. J. Nonlinear Mech. 46(1), 170–179 (2011)

    Article  MATH  Google Scholar 

  36. Arvin, H., Tang, Y.Q., Nadooshan, A.A.: Dynamic stability in principal parametric resonance of rotating beams: method of multiple scales versus differential quadrature method. Int. J. Nonlinear Mech. 85, 118–125 (2016)

    Article  Google Scholar 

  37. Nayfeh, A.H., Pai, P.F.: Linear and Nonlinear Structural Mechanics. Wiley, Hoboken (2008)

    MATH  Google Scholar 

  38. Lim, C.W., Wu, B.S.: A new analytical approach to the Duffing-harmonic oscillator. Phys. Lett. A. 311(4), 365–373 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kovacic, I., Brennan, M.J.: The Duffing Equation: Nonlinear Oscillators and Their Behaviour. Wiley, Chichester (2011)

    Book  MATH  Google Scholar 

  40. Niu, J.C., Shen, Y.J., Yang, S.P., Li, S.J.: Analysis of Duffing oscillator with time-delayed fractional-order PID controller. Int. J. Nonlinear Mech. 92, 66–75 (2017)

    Article  Google Scholar 

  41. Liu, H.G., Liu, X.L., Yang, J.H., Sanjuán, M.A.F., Cheng, G.: Detecting the weak high-frequency character signal by vibrational resonance in the Duffing oscillator. Nonlinear Dyn. 89(4), 2621–2628 (2017)

    Article  MathSciNet  Google Scholar 

  42. Kambali, P.N., Pandey, A.K.: Nonlinear coupling of transverse modes of a fixed-fixed microbeam under direct and parametric excitation. Nonlinear Dyn. 87(2), 1271–1294 (2017)

    Article  MATH  Google Scholar 

  43. Abdelkefi, A., Najar, F., Nayfeh, A.H., Ayed, S.B.: An energy harvester using piezoelectric cantilever beams undergoing coupled bending-torsion vibrations. Smart Mater. Struct. 20(11), 115007 (2011)

    Article  Google Scholar 

  44. Thomas, O., Sénéchal, A., Deü, J.-F.: Hardening/softening behavior and reduced order modeling of nonlinear vibrations of rotating cantilever beams. Nonlinear Dyn. 86(2), 1293–1318 (2016)

    Article  Google Scholar 

  45. Anderson, T.J., Nayfeh, A.H., Balachandran, B.: Experimental verification of the importance of the nonlinear curvature in the response of a cantilever beam. J. Vib. Acoust. 118(1), 21–27 (1996)

    Article  Google Scholar 

  46. Kovacic, I.: Forced vibrations of oscillators with a purely nonlinear power-form restoring force. J. Sound Vib. 330, 4313–4327 (2011)

    Article  Google Scholar 

  47. Kovacic, I., Lenci, S.: Externally excited purely nonlinear oscillators: insights into their response at different excitation frequencies. Nonlinear Dyn. 93, 119–132 (2018)

    Article  Google Scholar 

  48. Nayfeh, A.H., Mook, D.T., Sridhar, S.: Nonlinear analysis of the forced response of structural elements. J. Acoust. Soc. Am. 55(2), 281–291 (1974)

    Article  Google Scholar 

Download references

Acknowledgements

The results presented in this paper were obtained under the supports of the Science and Technology Development Fund of Macau (Grant No. 042/2017/A1) and the Research Committee of University of Macau (Grant No. MYRG2018-00116-FST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-En Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, HE., Er, GK. & Iu, V.P. Parameter-splitting perturbation method for the improved solutions to strongly nonlinear systems. Nonlinear Dyn 96, 1847–1863 (2019). https://doi.org/10.1007/s11071-019-04887-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04887-w

Keywords

Navigation