Skip to main content
Log in

Relativistic formulation of curl force, relativistic Kapitza equation and trapping

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this present communication, the relativistic formulation of the curl forces with saddle potentials has been performed. In particular, we formulated the relativistic version of the Kapitza equation. The dynamics and trapping phenomena of this equation have been studied both theoretically and numerically. The numerical results show interesting characteristics of the charged particles associated with the particle trapping and escaping in the relativistic domain. In addition, the relativistic generalization of the Kapitza equation associated with the monkey saddle has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. B\(\acute{e}\)gu\(\acute{e}\), M., Ghizzo, A., Bertrand, P., Sonnendrucker, E., Coulaud, O.: Two-dimensional semi-Lagrangian Vlasov simulations of laser-plasma interaction in the relativistic regime. J. Plasma Phys., 62:367 (1999)

  2. Lembege, B., Dawson, J.M.: Relativistic particle dynamics in a steepening magnetosonic wave. Phys. Fluids B 1, 1001 (1989)

    Article  Google Scholar 

  3. Mora, P.: Particle acceleration in a relativistic wave in the adiabatic regime. Phys. Fluids B 4, 1630 (1992)

    Article  Google Scholar 

  4. Gonoskov, A., Bashinov, A., Gonoskov, I., Harvey, C., Ilderton, A., Kim, A., Marklund, M., Mourou, G., Sergeev, A.: Anomalous radiative trapping in laser fields of extreme intensity. Phys. Rev. Lett. 113, 014801 (2014)

    Article  Google Scholar 

  5. Kostyukov, I., Nerush, E., Pukhov, A., Seredov, V.: Electron self-injection in multidimensional relativistic-plasma wake fields. Phys. Rev. Lett. 113, 175003 (2009)

    Article  Google Scholar 

  6. Zhang, P., Bulanov, S.S., Seipt, D., Arefiev, A.V., Thomas, A.G.R.: Relativistic plasma physics in supercritical fields. Phys. Plasmas 27, 050601 (2020)

    Article  Google Scholar 

  7. Suk, H., Barov, N., Rosenzweig, J.B., Esarey, E.: Electron self-injection in multidimensional relativistic-plasma wake fields. The Physics of High Brightness Beams, pp. 404-417 (2000)

  8. Kalmykov, S., Yi, S.A., Khudik, V., Shvets, G.: Electron self-injection and trapping into an evolving plasma bubble. Phys. Rev. Lett. 103, 135004 (2009)

    Article  Google Scholar 

  9. Berry, M.V., Shukla, P.: Classical dynamics with curl forces, and motion driven by time-dependent flux. J. Phys. A 45, 305201 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Berry, M.V., Shukla, P.: Hamiltonian curl forces. Proc. R. Soc. A 471, 20150002 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Berry, M.V., Shukla, P.: Physical curl forces: dipole dynamics near optical vortices. J. Phys. A 46, 422001 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chaumet, P.C., Nieto-Vesperinas, M.: Time-averaged total force on a dipolar sphere in an electromagnetic field. Opt. Lett. 25, 1065–1067 (2013)

    Article  Google Scholar 

  13. Albaladejo, S., Marqu\(\acute{e}\)s, M.I., Laroche, M., S\(\acute{a}\)enz, J.J.: Scattering forces from the curl of the spin angular momentum, Phys. Rev. Lett., 102:113602 (2009)

  14. Shimizu, Y., Sasada, H.: Mechanical force in laser cooling and trapping. Am. J. Phys. 66, 960–967 (1998)

    Article  Google Scholar 

  15. Gutzwiller, M.C.: The anisotropic Kepler problem in two dimensions. J. Math. Phys. 14, 139–152 (1973)

    Article  MathSciNet  Google Scholar 

  16. Devaney, R.L.: Nonregularizability of the anisotropic Kepler problem. J. Diff. Eqns. 29, 253 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ghose-Choudhury, A., Guha, P., Paliathanasis, A., Leach, P.G.L.: Noetherian symmetries of noncentral forces with drag term. Int. J. Geom. Methods Mod. Phys. 14, 1750018 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guha, P.: Generalized Emden–Fowler equations in noncentral curl forces and first integrals. Acta Mech. 231, 815–825 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Garai, S., Guha, P.: Higher-order saddle potentials, nonlinear curl forces, trapping and dynamics. Nonlinear Dyn. 103, 2257–2272 (2021)

    Article  Google Scholar 

  20. Guha, P., Garai, S.: Integrable modulation, curl forces and parametric Kapitza equation with trapping and escaping. Nonlinear Dyn. 106, 3091–3100 (2021)

    Article  Google Scholar 

  21. Paul, W.: Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 62(3), 531 (1990)

    Article  Google Scholar 

  22. Stephenson, A.: XX. On induced stability. Lond. Edinburgh Dublin Philos. Mag. J. Sci. 15(86), 233–236 (1908). https://doi.org/10.1080/14786440809463763

    Article  MATH  Google Scholar 

  23. Kapitza, P.L.: Dynamic stability of a pendulum when its point of suspension vibrates. Soviet Phys. JETP. 21, 588–592 (1951)

    Google Scholar 

  24. Byrne, J., Farago, P.S.: On the production of polarized electrons by spin exchange collisions. Proc. Phys. Soc. 86, 801–815 (1965)

    Article  Google Scholar 

  25. Gr\(\ddot{f}\)f, B.G., Klempt, E.: Messung der Zyklotronfrequenz freier Elektronen im Vierpolk\(\ddot{a}\)fig. Z. Naturforschung, 22:1960-1962 (1967)

  26. Sokolov, A.A., Pavlenko, Yu.G.: Induced and spontaneous emission in crossed fields. Opt. Spectrosc. 22, 1–3 (1967)

    Google Scholar 

  27. Ghose-Choudhury, A., Guha, P.: Hamiltonian description of nonlinear curl forces from cofactor systems. Acta Mech. 230, 2267–2277 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kirillov, O., Levi, M.: Rotating saddle trap as Foucault’s pendulum. Am. J. Phys. 84, 26 (2016)

    Article  Google Scholar 

  29. Kirillov, O., Levi, M.: Rotating saddle trap: a Coriolis force in an inertial frame. Nonlinearity 30, 1109–1119 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kapitza, P.L.: Stability and transition through the critical speed of fast rotating shafts with friction. Zhur. Tekhn. Fiz. 9, 124–147 (1939)

    Google Scholar 

  31. Merkin, D.R.: Gyroscopic systems, Nauka, Moscow, in Russian (first edition - 1956) (1974)

  32. Merkin, D.R.: Introduction to the Theory of Stability. Springer, New York (1997)

    Google Scholar 

  33. Harvey, A.L.: Relativistic harmonic oscillator. Phys. Rev. D 6, 1474–1475 (1972)

    Article  Google Scholar 

  34. Llibre, J., Makhlouf, A.: On the periodic solutions of the relativistic driven harmonic oscillator. J. Math. Phys. 61, 012501–012507 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, Z., Liu, J., Lucha, W., Ma, W., Schöberl, F.F.: Relativistic harmonic oscillator. J. Math. Phys. 46, 103514–103525 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Fujiwara, K.M., Geiger, Z.A., Singh, K., Senaratne, R., Rajagopal, S.V., Lipatov, M., Shimasaki, T., Weld, D.M.: Experimental realization of a relativistic harmonic oscillator. New J. Phys. 20, 063027 (2018)

    Article  Google Scholar 

  37. Haas, F.: Relativistic Ermakov–Milne–Pinney systems and first integrals. Physics 3(1), 59–70 (2021)

    Article  Google Scholar 

  38. Guha, P.: Relativistic formulation of noncentral curl force and relativistic Emden–Fowler type equations. Acta Mech. 233, 3591–3600 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kad, P., Choudhary, R., Bhatia, A., Walia, K., Singh, A.: Study of two cross focused Bessel–Gaussian laser beams on electron acceleration in relativistic regime. Optik 271, 170117 (2022)

    Article  Google Scholar 

  40. Tentori, A., Cola\(\ddot{i}\)tis, A., Batani, D.: 3D Monte-Carlo model to study the transport of hot electrons in the context of inertial confinement fusion Part I. Matter Radiat. Extrem., 7:065902 (2022)

  41. Lobok, M.G., Bychenkov, VYu.: Using relativistic self-trapping regime of a high-intensity laser pulse for high-energy electron radiotherapy. Plasma Phys. Rep. 48, 591 (2022)

    Article  Google Scholar 

  42. Kotova, A., Roussos, E., Kollmann, P., Krupp, N., Dandouras, I.: Galactic cosmic rays access to the magnetosphere of Saturn. JGR Space Phys. (2018). https://doi.org/10.1029/2018JA025661

    Article  Google Scholar 

  43. Goldstein, H., Poole, C., Safko, J.: Classical Mechanics, 3rd ed., Addison Wesley: San Francisco, USA, page 316 (2002)

  44. von der Linden, J., Fiksel, G., Peebles, J., Edwards, M.R., Willingale, L., Link, A., Mastrosimone, D., Chen, H.: Confinement of relativistic electrons in a magnetic mirror en route to a magnetized relativistic pair plasma. Phys. Plasmas 28, 092508 (2021)

    Article  Google Scholar 

  45. Itin, A.P.: Trapping and scattering of a relativistic charged particle by resonance in a magnetic field and an electromagnetic wave. Plasma Phys. Rep. 28, 592–602 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

PG is immensely grateful to Professor Sir Michael Berry for his critical and meticulous reading of this draft and for making invaluable remarks and or comments. PG and SG also convey their sincere thanks to Professor Haret Rosu for his suggestions and comments and Professors Praghya Shukla, Stefan Mancas and Anindya Ghose-Choudhury for various discussions and correspondences. PG thanks Khalifa University of Science and Technology for its continued support toward this research work under the grant number FSU-2021-014 and SG thanks Diamond Harbour Women’s University for providing the necessary research environment with constant encouragement and support. Lastly, the authors are grateful to the anonymous referees for their constructive comments in connection with the betterment of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to this work.

Corresponding author

Correspondence to Sudip Garai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guha, P., Garai, S. Relativistic formulation of curl force, relativistic Kapitza equation and trapping. Nonlinear Dyn 111, 9863–9874 (2023). https://doi.org/10.1007/s11071-023-08385-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08385-y

Keywords

Mathematics Subject Classification

Navigation