Skip to main content
Log in

Dynamical mechanism of parkinsonian beta oscillation in a heterogenous subthalamopallidal network

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Dysfunction of basal ganglia is associated with the pathogenesis of Parkinson's disease including alteration of firing rate and excessive beta-band (13-30 Hz) synchronization activity. Neuronal heterogeneity enriches dynamics of external globus pallidus (GPe), especially showing significant differences in firing alterations under pathological state. The precise mechanism underlying these neural signatures remains elusive. To address this, we propose a subthalamopallidal network containing two classes of GPe neurons, calcium-binding protein parvalbumin (PV) and Lim homeobox (Lhx6) GPe. Our results show that Lhx6 GPe tends to rein in synchronous behavior and abnormal activity of PV GPe. Under the pathological condition, the alteration of synaptic coupling in a heterogenous pallidal network manifests itself as a direct increase of inhibitory input to PV GPe or an indirect elevation of Lhx6 GPe firing rate. These essentially enhance the inhibition of PV GPe, which results in beta-band synchronous bursting. The subthalamic nucleus (STN) is instrumental in stabilizing the spiking sequence of GPe neurons, inhibiting abnormal synchronous oscillations both in control and pathological conditions. In a dopamine-depleted state, the PV GPe-PV GPe pathway notably impacts the enhancement of beta rhythmic oscillations in STN-GPe circuit. Besides, the synaptic coupling in heterogenous pallidal and STN-GPe affect the propagation of abnormal rhythms in pallidal and subthalamopallidal networks, respectively. Our study highlights the pivotal role played by PV GPe in producing and amplifying pathological oscillatory behavior. Our results suggest that STN prevents abnormal oscillatory rhythm in GPe, providing a novel insight into the precise mechanism by which STN affects pallidal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Yu, Y., Wang, X., Wang, Q., Wang, Q.: A review of computational modeling and deep brain stimulation: applications to Parkinson’s disease. Appl. Math. Mech.Engl. Ed. 41, 1747–1768 (2020). https://doi.org/10.1007/s10483-020-2689-9

    Article  MathSciNet  Google Scholar 

  2. Albin, R.L., Young, A.B., Penney, J.B.: The functional anatomy of basal ganglia disorders. Trend Neurosci. 12, 366–375 (1989). https://doi.org/10.1016/0166-2236(89)90074-X

    Article  Google Scholar 

  3. Bergman, H., Feingold, A., Nini, A., Raz, A., Slovin, H., Abeles, M., Vaadia, E.: Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trend Neurosci. (1998). https://doi.org/10.1016/0166-2236(89)90074-X

    Article  Google Scholar 

  4. Rubchinsky, L.L., Park, C., Worth, R.M.: Intermittent neural synchronization in parkinson’s disease. Nonlinear Dyn. 68, 329–346 (2012). https://doi.org/10.1007/s11071-011-0223-z

    Article  Google Scholar 

  5. Mallet, N., Ballion, B., Le Moine, C., Gonon, F.: Cortical inputs and GABA interneurons imbalance projection neurons in the striatum of parkinsonian rats. J. Neurosci. 26, 3875–3884 (2006). https://doi.org/10.1523/JNEUROSCI.4439-05.2006

    Article  Google Scholar 

  6. Parker, J.G., Marshall, J.D., Ahanonu, B., Wu, Y.-W., Kim, T.H., Grewe, B.F., Zhang, Y., Li, J.Z., Ding, J.B., Ehlers, M.D., Schnitzer, M.J.: Diametric neural ensemble dynamics in parkinsonian and dyskinetic states. Nature 557, 177–182 (2018). https://doi.org/10.1038/s41586-018-0090-6

    Article  Google Scholar 

  7. Kravitz, A.V., Freeze, B.S., Parker, P.R.L., Kay, K., Thwin, M.T., Deisseroth, K., Kreitzer, A.C.: Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466, 622–626 (2010). https://doi.org/10.1038/nature09159

    Article  Google Scholar 

  8. Stein, E., Bar-Gad, I.: β oscillations in the cortico-basal ganglia loop during parkinsonism. Exp. Neurol. 245, 52–59 (2013). https://doi.org/10.1016/j.expneurol.2012.07.023

    Article  Google Scholar 

  9. Brown, P.: Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease. Mov. Disord. 18, 357–363 (2003). https://doi.org/10.1002/mds.10358

    Article  Google Scholar 

  10. Weinberger, M., Mahant, N., Hutchison, W.D., Lozano, A.M., Moro, E., Hodaie, M., Lang, A.E., Dostrovsky, J.O.: Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson’s disease. J. Neurophysiol. 96, 3248–3256 (2006). https://doi.org/10.1152/jn.00697.2006

    Article  Google Scholar 

  11. Khawaldeh, S., Tinkhauser, G., Torrecillos, F., He, S., Foltynie, T., Limousin, P., Zrinzo, L., Oswal, A., Quinn, A.J., Vidaurre, D., Tan, H., Litvak, V., Kühn, A., Woolrich, M., Brown, P.: Balance between competing spectral states in subthalamic nucleus is linked to motor impairment in Parkinson’s disease. Brain (2022). https://doi.org/10.1093/brain/awab264

    Article  Google Scholar 

  12. Mallet, N., Pogosyan, A., Sharott, A., Csicsvari, J., Bolam, J.P., Brown, P., Magill, P.J.: Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex. J. Neurosci. (2008). https://doi.org/10.1523/JNEUROSCI.0123-08.2008

    Article  Google Scholar 

  13. Plenz, D., Kital, S.T.: A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature 400, 677–682 (1999). https://doi.org/10.1038/23281

    Article  Google Scholar 

  14. Terman, D., Rubin, J.E., Yew, A.C., Wilson, C.J.: Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J. Neurosci. 22, 2963–2976 (2002). https://doi.org/10.1523/jneurosci.22-07-02963.2002

    Article  Google Scholar 

  15. Park, C., Rubchinsky, L.L.: Potential mechanisms for imperfect synchronization in parkinsonian basal ganglia. PLoS ONE (2012). https://doi.org/10.1371/journal.pone.0051530

    Article  Google Scholar 

  16. Mallet, N., Micklem, B.R., Henny, P., Brown, M.T., Williams, C., Bolam, J.P., Nakamura, K.C., Magill, P.J.: Dichotomous organization of the external globus pallidus. Neuron 74, 1075–1086 (2012). https://doi.org/10.1016/j.neuron.2012.04.027

    Article  Google Scholar 

  17. Foster, N.N., Barry, J., Korobkova, L., Garcia, L., Gao, L., Becerra, M., Sherafat, Y., Peng, B., Li, X., Choi, J.-H., Gou, L., Zingg, B., Azam, S., Lo, D., Khanjani, N., Zhang, B., Stanis, J., Bowman, I., Cotter, K., Cao, C., Yamashita, S., Tugangui, A., Li, A., Jiang, T., Jia, X., Feng, Z., Aquino, S., Mun, H.-S., Zhu, M., Santarelli, A., Benavidez, N.L., Song, M., Dan, G., Fayzullina, M., Ustrell, S., Boesen, T., Johnson, D.L., Xu, H., Bienkowski, M.S., Yang, X.W., Gong, H., Levine, M.S., Wickersham, I., Luo, Q., Hahn, J.D., Lim, B.K., Zhang, L.I., Cepeda, C., Hintiryan, H., Dong, H.-W.: The mouse cortico–basal ganglia–thalamic network. Nature 598, 188–194 (2021). https://doi.org/10.1038/s41586-021-03993-3

    Article  Google Scholar 

  18. Yu, Y., Wang, Q.: Oscillation dynamics in an extended model of thalamic-basal ganglia. Nonlinear Dyn. 98, 1065–1080 (2019). https://doi.org/10.1007/s11071-019-05249-2

    Article  Google Scholar 

  19. Corbit, V.L., Whalen, T.C., Zitelli, K.T., Crilly, S.Y., Rubin, J.E., Gittis, A.H.: Pallidostriatal projections promote oscillations in a dopamine-depleted biophysical network model. J. Neurosci. 36, 5556–5571 (2016). https://doi.org/10.1523/jneurosci.0339-16.2016

    Article  Google Scholar 

  20. McElvain, L.E., Chen, Y., Moore, J.D., Brigidi, G.S., Bloodgood, B.L., Lim, B.K., Costa, R.M., Kleinfeld, D.: Specific populations of basal ganglia output neurons target distinct brain stem areas while collateralizing throughout the diencephalon. Neuron 109, 1721-1738.e4 (2021). https://doi.org/10.1016/j.neuron.2021.03.017

    Article  Google Scholar 

  21. Mallet, N., Pogosyan, A., Marton, L.F., Bolam, J.P., Brown, P., Magill, P.J.: Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity. J. Neurosci. 28, 14245–14258 (2008). https://doi.org/10.1523/jneurosci.4199-08.2008

    Article  Google Scholar 

  22. Cui, Q., Pamukcu, A., Cherian, S., Chang, I.Y.M., Berceau, B.L., Xenias, H.S., Higgs, M.H., Rajamanickam, S., Chen, Y., Du, X., Zhang, Y., McMorrow, H., Abecassis, Z.A., Boca, S.M., Justice, N.J., Wilson, C.J., Chan, C.S.: Dissociable roles of Pallidal neuron subtypes in regulating motor patterns. J. Neurosci. 41, 4036–4059 (2021). https://doi.org/10.1523/jneurosci.2210-20.2021

    Article  Google Scholar 

  23. Abrahao, K.P., Lovinger, D.M.: Classification of GABAergic neuron subtypes from the globus pallidus using wild-type and transgenic mice: classification of pallidal neurons. J. Physiol. 596, 4219–4235 (2018). https://doi.org/10.1113/jp276079

    Article  Google Scholar 

  24. Dong, J., Hawes, S., Wu, J., Le, W., Cai, H.: Connectivity and functionality of the globus pallidus externa under normal conditions and Parkinson’s disease. Front. Neural Circuits. (2021). https://doi.org/10.3389/fncir.2021.645287

    Article  Google Scholar 

  25. Kita, H., Kita, T.: Number, origins, and chemical types of rat pallidostriatal projection neurons. J. Comp. Neurol. 437, 438–448 (2001). https://doi.org/10.1002/cne.1294

    Article  Google Scholar 

  26. Mastro, K.J., Bouchard, R.S., Holt, H.A.K., Gittis, A.H.: Transgenic mouse lines subdivide external segment of the globus pallidus (GPe) neurons and reveal distinct GPe output pathways. J. Neurosci. 34, 2087–2099 (2014). https://doi.org/10.1523/jneurosci.4646-13.2014

    Article  Google Scholar 

  27. Evans, R.C., Twedell, E.L., Zhu, M., Ascencio, J., Zhang, R., Khaliq, Z.M.: Functional Dissection of Basal Ganglia Inhibitory Inputs onto Substantia Nigra Dopaminergic Neurons. Cell Rep. (2020). https://doi.org/10.1016/j.celrep.2020.108156

    Article  Google Scholar 

  28. Oh, Y.-M., Karube, F., Takahashi, S., Kobayashi, K., Takada, M., Uchigashima, M., Watanabe, M., Nishizawa, K., Kobayashi, K., Fujiyama, F.: Using a novel PV-Cre rat model to characterize pallidonigral cells and their terminations. Brain Struct. Funct. 222, 2359–2378 (2017). https://doi.org/10.1007/s00429-016-1346-2

    Article  Google Scholar 

  29. Abecassis, Z.A., Berceau, B.L., Win, P.H., García, D., Xenias, H.S., Cui, Q., Pamukcu, A., Cherian, S., Hernández, V.M., Chon, U., Lim, B.K., Kim, Y., Justice, N.J., Awatramani, R., Hooks, B.M., Gerfen, C.R., Boca, S.M., Chan, C.S. Npas1+ -Nkx2.1+ Neurons are an integral part of the cortico-pallido-cortical loop. J. Neurosci. 40, 743–768 (2020). https://doi.org/10.1523/jneurosci.1199-19.2019

  30. Glajch, K.E., Kelver, D.A., Hegeman, D.J., Cui, Q., Xenias, H.S., Augustine, E.C., Hernandez, V.M., Verma, N., Huang, T.Y., Luo, M., Justice, N.J., Chan, C.S.: Npas1+ pallidal neurons target striatal projection neurons. J. Neurosci. 36, 5472–5488 (2016). https://doi.org/10.1523/jneurosci.1720-15.2016

    Article  Google Scholar 

  31. Aristieta, A., Barresi, M., Azizpour Lindi, S., Barrière, G., Courtand, G., de la Crompe, B., Guilhemsang, L., Gauthier, S., Fioramonti, S., Baufreton, J., Mallet, N.P.: A disynaptic circuit in the globus pallidus controls locomotion inhibition. Curr. Biol. 31, 707-721.e7 (2021). https://doi.org/10.1016/j.cub.2020.11.019

    Article  Google Scholar 

  32. Pamukcu, A., Cui, Q., Xenias, H.S., Berceau, B.L., Augustine, E.C., Fan, I., Chalasani, S., Hantman, A.W., Lerner, T.N., Boca, S.M., Chan, C.S.: Parvalbumin+ and Npas1+ pallidal neurons have distinct circuit topology and function. J. Neurosci. 40, 7855–7876 (2020). https://doi.org/10.1523/jneurosci.0361-20.2020

    Article  Google Scholar 

  33. Jeon, H., Lee, H., Kwon, D.-H., Kim, J., Tanaka-Yamamoto, K., Yook, J.S., Feng, L., Park, H.R., Lim, Y.H., Cho, Z.-H., Paek, S.H., Kim, J. Topographic connectivity and cellular profiling reveal detailed input pathways and functionally distinct cell types in the subthalamic nucleus. Cell Rep. 38, 110439 (2022). https://doi.org/10.1016/j.celrep.2022.110439

  34. Saunders, A., Huang, K.W., Sabatini, B.L. Globus pallidus externus neurons expressing parvalbumin interconnect the subthalamic nucleus and striatal interneurons. PLoS ONE. 11, e0149798 (2016). https://doi.org/10.1371/journal.pone.0149798

  35. Ketzef, M., Silberberg, G.: Differential synaptic input to external globus pallidus neuronal subpopulations in vivo. Neuron 109, 516-529.e4 (2021). https://doi.org/10.1016/j.neuron.2020.11.006

    Article  Google Scholar 

  36. Johansson, Y., Ketzef, M. Sensory processing in external globus pallidus neurons. Cell Rep. 42, 111952 (2023). https://doi.org/10.1016/j.celrep.2022.111952

  37. Mastro, K.J., Zitelli, K.T., Willard, A.M., Leblanc, K.H., Kravitz, A.V., Gittis, A.H. Cell-specific pallidal intervention induces long-lasting motor recovery in dopamine-depleted mice. Nat. Neurosci. 20, (2017). https://doi.org/10.1038/nn.4559

  38. Spix, T.A., Nanivadekar, S., Toong, N., Kaplow, I.M., Isett, B.R., Goksen, Y., Pfenning, A.R., Gittis, A.H. Population-specific neuromodulation prolongs therapeutic benefits of deep brain stimulation. Science. 374, 201–206 (2021). https://doi.org/10.1126/science.abi7852

  39. Yu, Y., Hao, Y., Wang, Q.: Model-based optimized phase-deviation deep brain stimulation for Parkinson ’s disease. Neural Netw. 122, 308–319 (2020). https://doi.org/10.1016/j.neunet.2019.11.001

    Article  Google Scholar 

  40. Rubin, J.E., Terman, D.: High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. J. Comput. Neurosci. 16, 211–235 (2004). https://doi.org/10.1023/b:jcns.0000025686.47117.67

    Article  Google Scholar 

  41. Pirini, M., Rocchi, L., Sensi, M., Chiari, L. A computational modelling approach to investigate different targets in deep brain stimulation for Parkinson’s disease. J. Comput. Neurosci. 26, 91–107 (2009). https://doi.org/10.1007/s10827-008-0100-z

  42. Yu, Y., Han, F., Wang, Q.: Exploring phase–amplitude coupling from primary motor cortex-basal ganglia–thalamus network model. Neural Netw. 153, 130–141 (2022). https://doi.org/10.1016/j.neunet.2022.05.027

  43. de la Crompe, B., Aristieta, A., Leblois, A., Elsherbiny, S., Boraud, T., Mallet, N.P.: The globus pallidus orchestrates abnormal network dynamics in a model of Parkinsonism. Nat. Commun. 11, 1570 (2020). https://doi.org/10.1038/s41467-020-15352-3

    Article  Google Scholar 

  44. Kovaleski, R.F., Callahan, J.W., Chazalon, M., Wokosin, D.L., Baufreton, J., Bevan, M.D.: Dysregulation of external globus pallidus-subthalamic nucleus network dynamics in parkinsonian mice during cortical slow-wave activity and activation. J. Physiol. 598, 1897–1927 (2020). https://doi.org/10.1113/jp279232

    Article  Google Scholar 

  45. Hasegawa, T., Chiken, S., Kobayashi, K., Nambu, A. Subthalamic nucleus stabilizes movements by reducing neural spike variability in monkey basal ganglia. Nat. Commun. 13, 1–15 (2022). https://doi.org/10.1038/s41467-022-29750-2

  46. Wang, X., Yu, Y., Han, F., Wang, Q. Beta-band bursting activity in computational model of heterogeneous external globus pallidus circuits. Commun. Nonlinear Sci. Numerical Simul. 110, 106388 (2022). https://doi.org/10.1016/j.cnsns.2022.106388

  47. Gast, R., Gong, R., Schmidt, H., Meijer, H.G.E., Knösche, T.R.: On the role of arkypallidal and prototypical neurons for phase transitions in the external pallidum. J. Neurosci. 41, 6673–6683 (2021). https://doi.org/10.1523/JNEUROSCI.0094-21.2021

    Article  Google Scholar 

  48. So, R.Q., Kent, A.R., Grill, W.M.: Relative contributions of local cell and passing fiber activation and silencing to changes in thalamic fidelity during deep brain stimulation and lesioning: a computational modeling study. J. Comput. Neurosci. 32, 499–519 (2012). https://doi.org/10.1007/s10827-011-0366-4

    Article  MATH  Google Scholar 

  49. Brown, P., Williams, D.: Basal ganglia local field potential activity: Character and functional significance in the human. Clin. Neurophysiol. 116, 2510–2519 (2005). https://doi.org/10.1016/j.clinph.2005.05.009

    Article  Google Scholar 

  50. Priori, A., Foffani, G., Rossi, L., Marceglia, S.: Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations. Exp. Neurol. 245, 77–86 (2013). https://doi.org/10.1016/j.expneurol.2012.09.013

    Article  Google Scholar 

  51. Zhu, Y., Wang, J., Chang, S., Li, H., Deng, B., Liu, C.: Adaptive parameter modulation of deep brain stimulation in a computational model of basal ganglia–thalamic network. Nonlinear Dyn. 106, 945–958 (2021). https://doi.org/10.1007/s11071-021-06833-1

    Article  Google Scholar 

  52. Parasuram, H., Nair, B., D’Angelo, E., Hines, M., Naldi, G., Diwakar, S. Computational modeling of single neuron extracellular electric potentials and network local field potentials using LFPsim. Front. Comput. Neurosci. 10, (2016). https://doi.org/10.3389/fncom.2016.00065

  53. Einevoll, G.T., Kayser, C., Logothetis, N.K., Panzeri, S.: Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat. Rev. Neurosci. 14, 770–785 (2013). https://doi.org/10.1038/nrn3599

    Article  Google Scholar 

  54. Buzsáki, G., Anastassiou, C.A., Koch, C.: The origin of extracellular fields and currents—EEG, ECoG LFP and spikes. Nat. Rev. Neurosci. 13, 407–420 (2012). https://doi.org/10.1038/nrn3241

    Article  Google Scholar 

  55. Su, F., Wang, J., Niu, S., Li, H., Deng, B., Liu, C., Wei, X.: Nonlinear predictive control for adaptive adjustments of deep brain stimulation parameters in basal ganglia–thalamic network. Neural Netw. 98, 283–295 (2018). https://doi.org/10.1016/j.neunet.2017.12.001

    Article  MATH  Google Scholar 

  56. Mazzoni, A., Lindén, H., Cuntz, H., Lansner, A., Panzeri, S., Einevoll, G.T. Computing the local field potential (LFP) from Integrate-and-fire network models. PLOS Comput. Biol. 11, e1004584 (2015). https://doi.org/10.1371/journal.pcbi.1004584

  57. Martínez-Cañada, P., Ness, T.V., Einevoll, G.T., Fellin, T., Panzeri, S. Computation of the electroencephalogram (EEG) from network models of point neurons. PLOS Comput. Biol. 17, e1008893 (2021). https://doi.org/10.1371/journal.pcbi.1008893

  58. Deister, C.A., Dodla, R., Barraza, D., Kita, H., Wilson, C.J.: Firing rate and pattern heterogeneity in the globus pallidus arise from a single neuronal population. J. Neurophysiol. 109, 497–506 (2013). https://doi.org/10.1152/jn.00677.2012

    Article  Google Scholar 

  59. Abdi, A., Mallet, N., Mohamed, F.Y., Sharott, A., Dodson, P.D., Nakamura, K.C., Suri, S., Avery, S.V., Larvin, J.T., Garas, F.N., Garas, S.N., Vinciati, F., Morin, S., Bezard, E., Baufreton, J., Magill, P.J.: Prototypic and arkypallidal neurons in the dopamine-intact external globus pallidus. J. Neurosci. 35, 6667–6688 (2015). https://doi.org/10.1523/jneurosci.4662-14.2015

    Article  Google Scholar 

  60. Gunay, C., Edgerton, J.R., Jaeger, D.: Channel density distributions explain spiking variability in the globus pallidus: a combined physiology and computer simulation database approach. J. Neurosci. (2008). https://doi.org/10.1523/JNEUROSCI.4198-07.2008

    Article  Google Scholar 

  61. Moolchand, P., Jones, S.R., Frank, M.J.: Biophysical and architectural mechanisms of subthalamic theta under response conflict. J. Neurosci. (2022). https://doi.org/10.1523/JNEUROSCI.2433-19.2022

    Article  Google Scholar 

  62. Nevado-Holgado, A.J., Mallet, N., Magill, P.J., Bogacz, R.: Effective connectivity of the subthalamic nucleus–globus pallidus network during parkinsonian oscillations. J. Physiol. 592, 1429–1455 (2014). https://doi.org/10.1113/jphysiol.2013.259721

    Article  Google Scholar 

  63. Fujiyama, F., Nakano, T., Matsuda, W., Furuta, T., Udagawa, J., Kaneko, T.: A single-neuron tracing study of arkypallidal and prototypic neurons in healthy rats. Brain Struct. Funct. 221, 4733–4740 (2016). https://doi.org/10.1007/s00429-015-1152-2

    Article  Google Scholar 

  64. Chazalon, M., Paredes-Rodriguez, E., Morin, S., Martinez, A., Cristóvão-Ferreira, S., Vaz, S., Sebastiao, A., Panatier, A., Boué-Grabot, E., Miguelez, C., Baufreton, J.: GAT-3 dysfunction generates tonic inhibition in external globus pallidus neurons in parkinsonian rodents. Cell Rep. 23, 1678–1690 (2018). https://doi.org/10.1016/j.celrep.2018.04.014

    Article  Google Scholar 

  65. Miguelez, C., Morin, S., Martinez, A., Goillandeau, M., Bezard, E., Bioulac, B., Baufreton, J.: Altered pallido-pallidal synaptic transmission leads to aberrant firing of globus pallidus neurons in a rat model of Parkinson’s disease: increase in pallidal recurrent inhibition in experimental parkinsonism. J. Physiol. 590, 5861–5875 (2012). https://doi.org/10.1113/jphysiol.2012.241331

    Article  Google Scholar 

  66. Bevan, M.D., Wilson, C.J., Bolam, J.P., Magill, P.J.: Equilibrium potential of GABAA current and implications for rebound burst firing in rat subthalamic neurons in vitro. J. Neurophysiol. 83, 3169–3172 (2000). https://doi.org/10.1152/jn.2000.83.5.3169

    Article  Google Scholar 

  67. Fan, K.Y., Baufreton, J., Surmeier, D.J., Chan, C.S., Bevan, M.D.: Proliferation of external globus pallidus-subthalamic nucleus synapses following degeneration of midbrain dopamine neurons. J. Neurosci. 32, 13718–13728 (2012). https://doi.org/10.1523/jneurosci.5750-11.2012

    Article  Google Scholar 

  68. Yin, L., Han, F., Yu, Y., Wang, Q.: A computational network dynamical modeling for abnormal oscillation and deep brain stimulation control of obsessive–compulsive disorder. Cogn. Neurodyn. (2022). https://doi.org/10.1007/s11571-022-09858-3

    Article  Google Scholar 

  69. Yu, Y., Fan, Y., Hou, S., Wang, Q.: Optogenetic stimulation of primary motor cortex regulates beta oscillations in the basal ganglia: a computational study. Commun. Nonlinear Sci. Numer. Simul. (2023). https://doi.org/10.1016/j.cnsns.2022.106918

    Article  MATH  Google Scholar 

  70. Lindahl, M., Kamali Sarvestani, I., Ekeberg, Ö., Kotaleski, J.H.: Signal enhancement in the output stage of the basal ganglia by synaptic short-term plasticity in the direct, indirect, and hyperdirect pathways. Front. Comput. Neurosci. (2013). https://doi.org/10.3389/fncom.2013.00076

    Article  Google Scholar 

  71. Kumar, A., Prakash, A., Mehmet Baskonus, H.: The epidemic COVID-19 model via Caputo-Fabrizio fractional operator. Waves Random Complex Media (2022). https://doi.org/10.1080/17455030.2022.2075954

    Article  Google Scholar 

  72. Sabir, Z., Umer, M., Raja, M.A.Z., Fathurrochman, I., Hasan, H.: Design of morlet wavelet neural network to solve the non-linear influenza disease system. Appl. Math. Nonlinear Sci. (2022). https://doi.org/10.2478/amns.2021.2.00120

    Article  Google Scholar 

  73. Trejos, D.Y., Valverde, J.C., Venturino, E.: Dynamics of infectious diseases: a review of the main biological aspects and their mathematical translation. Appl. Math. Nonlinear Sci. 7, 1–26 (2022). https://doi.org/10.2478/amns.2021.1.00012

    Article  MathSciNet  Google Scholar 

  74. Ahn, S., Zauber, S.E., Worth, R.M., Rubchinsky, L.L.: Synchronized beta-band oscillations in a model of the globus pallidus-subthalamic nucleus network under external input. Front. Comput. Neurosci (2016). https://doi.org/10.3389/fncom.2016.00134

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grants Nos. 11932003, 12272092 and 12202027).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors designed, performed the research and analyzed the data as well as wrote the paper.

Corresponding authors

Correspondence to Fang Han or Qingyun Wang.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yu, Y., Han, F. et al. Dynamical mechanism of parkinsonian beta oscillation in a heterogenous subthalamopallidal network. Nonlinear Dyn 111, 10505–10527 (2023). https://doi.org/10.1007/s11071-023-08381-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08381-2

Keywords

Navigation