Skip to main content
Log in

Modal utilization method for measuring the track axial force

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Measurement of thermal forces is an important process that aids in reducing the maintenance cost of continuous welded rails (CWRs). But it is still a very challenging problem. Axial force can be measured through vibration modal changes, and vibration measurement methods have several merits compared to conventional measurement methods using piles, strain sensors, magnetoelastic and acoustoelastic effect sensors, and X-rays. Vibration measurement methods have the ability to measure the absolute thermal force in a local interval and are robust against abrasion, surface residual stress, and material grains. However, they are affected by both axial force and track parameters, thereby restricting their engineering applications. To address these limitations, this study proposes a novel method called ‘modal utilization method of periodic structure’ (MUMPS). Its novelty lies in proving that variations in frequency constitute a random sequence satisfying the constraints of Chebyshev’s law of large numbers. It can determine the influence of track parameters on the vibration modes by averaging across different eigenfrequencies without investigating what they correspond to respectively. First, MUMPS is introduced through a hypothesis that the mean value of the natural frequency variations caused by the track parameter variations approaches a stable value. Second, MUMPS is validated using finite element simulation results, which show that the probability density function of the measurement error of the neutral temperature obey N(0.5,2.6). Finally, the accuracy of MUMPS is investigated through experiments, the results are compared with the strain-gauge method results, and they show good agreement. The experimental results show that as the number of the eigenfrequencies reaches 12, the mean value becomes stable, and the measurement error of neutral temperature is less than 4 \(^\circ {\textrm{C}}\). Engineering applicability of MUMPS is demonstrated by conducting real-time measurements on railway tracks. The results show that the proposed method is simple, as sophisticated instruments are not employed to determine the axial forces on railway tracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article.

References

  1. Yu, Q., Dersch, M.S., Edwards, J.R., et al.: Effect of easement geometry on rail end fillet stress at bolted rail joints for transit track. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 235(7), 906–913 (2021). https://doi.org/10.1177/0954409720970000

  2. Ruge, P., Birk, C.: Longitudinal forces in continuously welded rails on bridgedecks due to nonlinear track-bridge interaction. Comput. Struct. 85(7–8), 458–475 (2007). https://doi.org/10.1016/j.compstruc.2006.09.008

    Article  Google Scholar 

  3. Pucillo, G.P.: Thermal buckling and post-buckling behaviour of continuous welded rail track. Veh. Syst. Dyn. 54(12), 1785–1807 (2016). https://doi.org/10.1080/00423114.2016.1237665

    Article  Google Scholar 

  4. Zhou, R., Zhu, X., Ren, W.X., et al.: Thermal evolution of CRTS II slab track under various environmental temperatures: experimental study[J]. Constr. Build. Mater. 325, 126699 (2022). https://doi.org/10.1016/j.conbuildmat.2022.126699

    Article  Google Scholar 

  5. Wen-pei, S., Ming-hsiang, S., et al.: The critical loading for lateral buckling of continuous welded rail [J]. J. Zhejiang Univ. Sci. A 6, 878–885 (2005). https://doi.org/10.1631/jzus.2005.a0878

    Article  Google Scholar 

  6. Dobney, K., Baker, C.J., et al.: The future cost to the United Kingdom’s railway network of heat-related delays and buckles caused by the predicted increase in high summer temperatures owing to climate change[J]. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 224(1), 25–34 (2010). https://doi.org/10.1243/09544097JRRT292

  7. Oslakovic, I.S., ter Maat, H., Hartmann, A., et al.: Climate change and infrastructure performance: should we worry about?[J]. Proc. Soc. Behav. Sci. 48, 1775–1784 (2012). https://doi.org/10.1016/j.sbspro.2012.06.1152

    Article  Google Scholar 

  8. Skarova, A., Harkness, J., Keillor, M., et al.: Review of factors affecting stress-free temperature in the continuous welded rail track[J]. Energy Rep. 8, 769–775 (2022). https://doi.org/10.1016/j.egyr.2022.05.046

    Article  Google Scholar 

  9. Ahmad, S.S., Mandal, N.K., Chattopadhyay, G., et al.: Development of a unified railway track stability management tool to enhance track safety [J]. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 227(5), 493–516 (2013). https://doi.org/10.1177/0954409713501490

  10. Georges, K., Christophe, C., Damien, K., et al.: Review of trackside monitoring solutions: from strain gages to optical fibre sensors [J]. Sensors 15(8), 20115–20139 (2015). https://doi.org/10.3390/s150820115

    Article  Google Scholar 

  11. Wang, P., Xie, K., Shao, L., et al.: Longitudinal force measurement in continuous welded rail with bi-directional FBG strain sensors[J]. Smart Mater. Struct. 25(1), 015019 (2015). https://doi.org/10.1088/0964-1726/25/1/015019

    Article  Google Scholar 

  12. Biao, W., Kaize, X.I.E., Jieling, X., et al.: Test principle and test scheme of longitudinal force in continuous welded rail using resistance strain gauge[J]. J. Southwest Jiaotong Univ. (2016). https://doi.org/10.3969/j.issn.0258-2724.2016.01.007

    Article  Google Scholar 

  13. Kim, N., Yun, H.B.: Noncontact mobile sensing for absolute stress in rail using photoluminescence piezospectroscopy[J]. Struct. Health Monit. 17(5), 1213–1224 (2018). https://doi.org/10.1177/1475921717742102

    Article  Google Scholar 

  14. Ding, S., Wang, P., Lin, Y., et al.: Reduction of thermal effect on rail stress measurement based on magnetic Barkhausen noise anisotropy[J]. Measurement 125, 92–98 (2018). https://doi.org/10.1016/j.measurement.2018.02.041

    Article  Google Scholar 

  15. Samimi, A.A., Krause, T.W., Clapham, L.: Stress response of magnetic Barkhausen noise in submarine hull steel: a comparative study [J]. J. Nondestr. Eval. 35(2), 32 (2016). https://doi.org/10.1007/s10921-016-0348-6

    Article  Google Scholar 

  16. Vengrinovich, V., Vintov, D., Prudnikov, A., et al.: Magnetic Barkhausen effect in steel under biaxial strain/stress: influence on stress measurement[J]. J. Nondestr. Eval. 38(2), 1–8 (2019). https://doi.org/10.1007/s10921-019-0576-7

    Article  Google Scholar 

  17. Saleem, A., Underhill, P.R., Farrell, S.P., et al.: Magnetic Barkhausen noise measurements to assess temper embrittlement in HY-80 steels[J]. IEEE Trans. Magn. 56(3), 1–8 (2020). https://doi.org/10.1109/TMAG.2019.2960489

    Article  Google Scholar 

  18. Zuo, P., Yu, X., Fan, Z.: Acoustoelastic guided waves in waveguides with arbitrary prestress[J]. J. Sound Vib. 469, 115113 (2020). https://doi.org/10.1016/j.jsv.2019.115113

    Article  Google Scholar 

  19. Vangi, D., Virga, A.: A practical application of ultrasonic thermal stress monitoring in continuous welded rails [J]. Exp. Mech. 47, 617–623 (2007). https://doi.org/10.1007/s11340-006-9016-6

    Article  Google Scholar 

  20. Loveday, P.W.: Guided wave inspection and monitoring of railway track [J]. J. Nondestr. Eval. 31(4), 303–309 (2012). https://doi.org/10.1007/s10921-012-0145-9

    Article  Google Scholar 

  21. Duan, X., Zhu, L., Yu, Z., et al.: Estimating the axial load of in-service continuously welded rail under the influences of rail wear and temperature[J]. IEEE Access 7, 143524–143538 (2019). https://doi.org/10.1109/ACCESS.2019.2945609

    Article  Google Scholar 

  22. Ma, Y.L., Chen, J.Z., He, R.B., et al.: Research on pipeline internal stress detection technology based on the Barkhausen effect[J]. Insight-Non-Destruct. Test. Cond. Monit. 62(9), 550–554 (2020). https://doi.org/10.1784/insi.2020.62.9.550

    Article  Google Scholar 

  23. Bahubalindruni, P.G., Barquinha, P., Tiwari, B., et al.: Rail-to-rail timing signals generation using InGaZnO TFTs for flexible x-ray detector[J]. IEEE J. Electr. Dev. Soc. 99, 1 (2020). https://doi.org/10.1109/JEDS.2020.2971277

    Article  Google Scholar 

  24. Kukulski, J., Gołȩbiowski, P., Makowski, J., et al.: Effective method for diagnosing continuous welded track condition based on experimental research[J]. Energies 14(10), 2889 (2021). https://doi.org/10.3390/en14102889

    Article  Google Scholar 

  25. Nucera, C., di Scalea, F.L.: Nonlinear wave propagation in constrained solids subjected to thermal loads[J]. J. Sound Vib. 333(2), 541–554 (2014). https://doi.org/10.1016/j.jsv.2013.09.018

    Article  Google Scholar 

  26. Nucera, C., di Scalea, F.L.: Nondestructive measurement of neutral temperature in continuous welded rails by nonlinear ultrasonic guided waves[J]. J. Acoust. Soc. Am. 136(5), 2561–2573 (2014). https://doi.org/10.1121/1.4896463

    Article  Google Scholar 

  27. Lissenden, C.J.: Nonlinear ultrasonic guided waves-Principles for nondestructive evaluation[J]. J. Appl. Phys. 129(2), 021101 (2021). https://doi.org/10.1063/5.0038340

    Article  Google Scholar 

  28. Xie, M., Wei, K., Ren, J., et al.: Theoretical and experimental studies on the natural frequencies of fastener clips[J]. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-08113-y

    Article  Google Scholar 

  29. Fabien, T.: Vibration analysis of horizontal self-weighted beams and cables with bending stiffness subjected to thermal loads[J]. J. Sound Vib. (2010). https://doi.org/10.1016/j.jsv.2009.11.018

    Article  Google Scholar 

  30. Luo, Y.: A model for predicting the effect of temperature force of continuous welded rail track [J]. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 213(2), 117–124 (1999). https://doi.org/10.1243/0954409991531074

  31. Enshaeian, A., Rizzo, P.: Stability of continuous welded rails: a state-of-the-art review of structural modeling and nondestructive evaluation [J]. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 235(10), 1291–1311 (2021). https://doi.org/10.1177/0954409720986661

  32. Luo, Y., Li, L., Yin, H.: A dynamic analysis of a continuous welded rail track under a longitudinal stress caused by temperature changes [J]. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 224(2), 91–101 (2010). https://doi.org/10.1243/09544097JRRT290

  33. Feng, Q., Wang, W., et al.: Vertical vibration analysis of temperature-stressed CWR using wave number finite element method [J]. Int. J. Rail Transp. 6(2), 131–144 (2018). https://doi.org/10.1080/23248378.2017.1415171

    Article  Google Scholar 

  34. Wang, K., Liu, C., Wang, D., et al.: Instrument for investigating the rail of a ballastless track under longitudinal temperature force [J]. Adv. Mech. Eng. 8(7), 1–7 (2016). https://doi.org/10.1177/1687814016651816

    Article  Google Scholar 

  35. Cai, Z., Raymond, G.P., Bathurst, R.J.: Natural vibration analysis of rail track as a system of elastically coupled beam structures on Winkler foundation[J]. Comput. Struct. 53(6), 1427–1436 (1994). https://doi.org/10.1016/0045-7949(94)90408-1

    Article  Google Scholar 

  36. Corrêa, R.T., Costa, A., Simes, F.M.F.: Finite element modelling of a rail resting on a Winkler-Coulomb foundation and subjected to a moving concentrated load [J]. Int. J. Mech. Sci. (2018). https://doi.org/10.1016/j.ijmecsci.2018.03.022

    Article  Google Scholar 

  37. Feng, Q., Wang, W., et al.: Analysis of vertical vibration characteristics of periodic discrete supported rail under axial temperature force [J]. J. China Railw. Soc. 40(8), 122–129 (2018). https://doi.org/10.3969/j.issn.1001-8360.2018.08.016

    Article  Google Scholar 

  38. Hu, Q., Shen, Y.J., Zhu, H.P., et al.: A feasibility study on void detection of cement-emulsified asphalt mortar for slab track system utilizing measured vibration data [J]. Eng. Struct. 245(1), 112349 (2021). https://doi.org/10.1016/j.engstruct.2021.112349

    Article  Google Scholar 

  39. Li, T., Su, Q., Kaewunruen, S.: Influences of dynamic material properties of slab track components on the train-track vibration interactions [J]. Eng. Fail. Anal. (2020). https://doi.org/10.1016/j.engfailanal.2020.104633

    Article  Google Scholar 

  40. Feng, Q., Yang, Z., et al.: Analysis of vertical vibration band gap characteristics of periodic discrete support rail [J]. Sci. China-Technol. Sci. 50(12), 1563–1576 (2020). https://doi.org/10.1360/SST-2019-0271

    Article  Google Scholar 

  41. Zhang, P., Li, S., et al.: Vibration modes and wave propagation of the rail under fastening constraint [J]. Mech. Syst. Signal Process. 160, 107933 (2021). https://doi.org/10.1016/j.ymssp.2021.107933

    Article  Google Scholar 

  42. Feng, Q., Liu, Z., Jiang, J., et al.: Continuous assessment of longitudinal temperature force on ballasted track using rail vibration frequency[J]. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 236(3), 212–219 (2022). https://doi.org/10.1177/09544097211008296

  43. Jing, G., Jia, W., et al.: Experimental and numerical study on lateral resistance of frictional sleeper with arrowhead groove[J]. Transp. Geotech. 30, 100638 (2021). https://doi.org/10.1016/j.trgeo.2021.100638

    Article  Google Scholar 

  44. Li, Q., Thompson, D.J., Toward, M.G.R.: Estimation of track parameters and wheel-rail combined roughness from rail vibration [J]. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 232(4), 1149–1167 (2018). https://doi.org/10.1177/0954409717710126

  45. Zhang, X., Thompson, D.J., Li, Q., et al.: A model of a discretely supported railway track based on a 2.5 D finite element approach [J]. J. Sound Vib. 438, 153–174 (2019). https://doi.org/10.1016/j.jsv.2018.09.026

  46. Liu, P., Quan, Y., Wan, J., et al.: Experimental investigation on the wear and damage characteristics of machined wheel/rail materials under dry rolling-sliding condition[J]. Metals 10(4), 472 (2020). https://doi.org/10.3390/met10040472

    Article  Google Scholar 

  47. He, W., Zou, C., Pang, Y., et al.: Environmental noise and vibration characteristics of rubber-spring floating slab track [J]. Environ. Sci. Pollut. Res. 28(11), 13671–13689 (2021). https://doi.org/10.1007/s11356-020-11627-w

    Article  Google Scholar 

  48. Milne, D., Harkness, J., Le Pen, L., et al.: The influence of variation in track level and support system stiffness over longer lengths of track for track performance and vehicle track interaction [J]. Veh. Syst. Dyn. 59(2), 245–268 (2021). https://doi.org/10.1080/00423114.2019.1677920

    Article  Google Scholar 

  49. Seneta, E.: A tricentenary history of the law of large numbers[J]. Bernoulli 19(4), 1088–1121 (2013). https://doi.org/10.3150/12-BEJSP12

    Article  MathSciNet  MATH  Google Scholar 

  50. Jianguo, X.I.A.O., Douglas, D.: A delphi evaluation of the factors influencing length of stay in Australian hospitals [J]. Int. J. Health Plan. Manage. 12, 207–218 (1997). https://doi.org/10.1002/(SICI)1099-1751(199707/09)12:3$<$207::AID-HPM480$>$3.0.CO;2-V

  51. Aikawa, A., Sakai, H., Abe, K.: Numerical and experimental study on measuring method of rail axial stress of continuous welded rails based on use of resonant frequency [J]. Quart. Rep. Rtri 54(2), 118–125 (2013). https://doi.org/10.2219/rtriqr.54.118

    Article  Google Scholar 

  52. Kato, S., Kamohara, A., Yokoyama, H., et al.: Influence of variation in track support rigidity around overbridges on ground vibration[J]. Quart. Rep. RTRI 55(4), 241–248 (2014). https://doi.org/10.2219/rtriqr.55.241

    Article  Google Scholar 

  53. Urakawa, F., Abe, K., Takahashi, H.: Improvement of accuracy of method for measuring axial force of rail based on natural frequency [J]. Quart. Rep. RTRI 57(2), 125–132 (2016). https://doi.org/10.2219/rtriqr.57.2-125

    Article  Google Scholar 

  54. Lei, X., Noda, N.A.: Analyses of dynamic response of vehicle and track coupling system with random irregularity of track vertical profile [J]. J. Sound Vib. 258(1), 147–165 (2002). https://doi.org/10.1006/jsvi.2002.5107

    Article  Google Scholar 

  55. Zakeri, J.A., Xia, H., Fan, J.: Dynamic responses of train-track system to single rail irregularity[J]. Lat. Am. J. Solids Struct. (2009). https://doi.org/10.1061/(ASCE)0733-9488(2009)135:2(86)

    Article  Google Scholar 

  56. Sun, Y.Q., Cole, C., Spiryagin, M.: Study on track dynamic forces due to rail short-wavelength dip defects using rail vehicle-track dynamics simulations [J]. J. Mech. Sci. Technol. 27(3), 629–640 (2013). https://doi.org/10.1007/s12206-013-0117-8

    Article  Google Scholar 

  57. Xu, L., Zhai, W., Gao, J.: A probabilistic model for track random irregularities in vehicle/track coupled dynamics [J]. Appl. Math. Model. 51, 145–158 (2017). https://doi.org/10.1016/j.apm.2017.06.027

    Article  MathSciNet  MATH  Google Scholar 

  58. Zakeri, J.A., Ghorbani, V.: Investigation on dynamic behavior of railway track in transition zone [J]. J. Mech. Sci. Technol. 25(2), 287–292 (2011). https://doi.org/10.1007/s12206-010-1202-x

    Article  Google Scholar 

  59. Yue, G., Wang, Y., et al.: A dynamic model for measuring axial force in discretely supported rails [J]. Mech. Adv. Mater. Struct. (2022). https://doi.org/10.1080/15376494.2022.2056275

    Article  Google Scholar 

  60. Shen, C., Deng, X., Wei, Z., et al.: Comparisons between beam and continuum models for modelling wheel-rail impact at a singular rail surface defect[J]. Int. J. Mech. Sci. 198, 106400 (2021). https://doi.org/10.1016/j.ijmecsci.2021.106400

    Article  Google Scholar 

  61. Zhao, X., Li, Z., Dollevoet, R.: The vertical and the longitudinal dynamic responses of the vehicle-track system to squat-type short wavelength irregularity [J]. Veh. Syst. Dyn. 51(12), 1918–1937 (2013). https://doi.org/10.1080/00423114.2013.847466

    Article  Google Scholar 

  62. Liu, X., Han, J., Hanwen, X., et al.: An indirect method for rail corrugation measurement based on numerical models and wavelet packet decomposition [J]. Measurement 191, 110726 (2022). https://doi.org/10.1016/j.measurement.2022.110726

    Article  Google Scholar 

  63. Zhao, X., Zhang, P., Wen, Z.: On the coupling of the vertical, lateral and longitudinal wheel-rail interactions at high frequencies and the resulting irregular wear [J]. Wear 430, 317–326 (2019). https://doi.org/10.1016/j.wear.2019.05.017

    Article  Google Scholar 

  64. Gao, Y., Xu, J., Wang, P., et al.: Effect of surface hardening on dynamic frictional rolling contact behavior and degradation of corrugated rail [J]. Shock. Vib. 8, 5493182.1-5493182.15 (2019). https://doi.org/10.1155/2019/5493182

  65. Sun, F., Aijun, G., Liu, W.: Study on Vibration and Transmission Characteristics of Long Solid Rail Models under Different Frequencies [J]. Journal of the China Railway Society 35(2), 81–86 (2013). https://doi.org/10.3969/j.issn.1001-8360.2013.02.012

    Article  Google Scholar 

  66. Ma, L., Liang, Q., et al.: Research on impact of Shanghai-Nanjing intercity high-speed railway induced vibration on ambient environment and foundation settlement of adjacent Beijing-Shanghai Railway [J]. J. China Railw. Soc. 37(2), 98–105 (2015). https://doi.org/10.3969/j.issn.1001-8360.2015.02.015

    Article  MathSciNet  Google Scholar 

  67. Karda, K., Dubey, N., Kanungo, A., Gupta, V.: Automation of noise sampling in deep reinforcement learning [J]. Int. J. Appl. Pattern Recognit. 7(1), 15–23 (2022). https://doi.org/10.1504/IJAPR.2022.122261

    Article  Google Scholar 

  68. Kai, Q., Zhang, M., Wang, N., Xuan, J.: Bivariate spline finite element solver for linear hyperbolic equations in two-dimensional spaces [J]. Wirel. Pers. Commun. 102, 3067–3077 (2018). https://doi.org/10.1007/s11277-018-5326-0

    Article  Google Scholar 

  69. Zhou, W., Zhang, S.: The decision delay in finite-length MMSE-DFE systems [J]. Wirel. Pers. Commun. 83, 175–189 (2015). https://doi.org/10.1007/s11277-015-2387-1

    Article  Google Scholar 

  70. Maanicshah, K., Amayri, M., Bouguila, N., et al.: Unsupervised learning using variational inference on finite inverted dirichlet mixture models with component splitting[J]. Wirel. Pers. Commun. 119, 1817–1844 (2021). https://doi.org/10.1007/s11277-021-08308-3

    Article  Google Scholar 

  71. Bodapati, J.D., Srilakshmi, U., Veeranjaneyulu, N.: FERNet: a deep CNN architecture for facial expression recognition in the wild[J]. J. Inst. Eng. (India) Ser. B 103(2), 439–448 (2022). https://doi.org/10.1007/s40031-021-00681-8

  72. Grassie, S.L., Gregory, R.W., et al.: The dynamic response of railway track to high frequency vertical excitation [J]. J. Mech. Eng. Sci. 24(2), 77–90 (1982). https://doi.org/10.1243/JMESJOUR_1982_024_01_02

    Article  Google Scholar 

  73. Matsuoka, K., Kajihara, K., Tanaka, H.: Identification of vibration modes and wave propagation of operational rails by multipoint hammering and reciprocity theorem [J]. Materials 15(3), 811 (2022). https://doi.org/10.3390/ma15030811

    Article  Google Scholar 

  74. Yao, X.J., Yi, T.H., Qu, C.X.: Autoregressive spectrum-guided variational mode decomposition for time-varying modal identification under nonstationary conditions [J]. Eng. Struct. 251(Pt.A), 113543 (2022). https://doi.org/10.1016/j.engstruct.2021.113543

  75. Ma, B., Zhang, T., An, Z., et al.: A blind source separation method for time-delayed mixtures in underdetermined case and its application in modal identification[J]. Digit. Signal Process. 112(8), 103007 (2021). https://doi.org/10.1016/j.dsp.2021.103007

    Article  Google Scholar 

  76. Prasanna Kumar, G., Krishna, B.T., Pushpa, K.: Optimized pipelined fast Fourier transform using split and merge parallel processing units for OFDM[J]. Wirel. Pers. Commun. 117, 3067–3089 (2021). https://doi.org/10.1007/s11277-020-07471-3

    Article  Google Scholar 

  77. Gupta, V., Mittal, M.: Arrhythmia detection in ECG signal using fractional wavelet transform with principal component analysis[J]. J. Inst. Eng. (India) Ser. B 101(5), 451–461 (2020). https://doi.org/10.1007/s40031-020-00488-z

  78. Gupta, V., Mittal, M., Mittal, V., et al.: BP signal analysis using emerging techniques and its validation using ECG signal[J]. Sens. Imaging 22(1), 25 (2021). https://doi.org/10.1007/s11220-021-00349-z

    Article  Google Scholar 

  79. Gupta, V., Mittal, M.: QRS complex detection using STFT, chaos analysis, and PCA in standard and real-time ECG databases[J]. J. Inst. Eng. (India) Ser. B 100, 489–497 (2019). https://doi.org/10.1007/s40031-019-00398-9

  80. Gupta, V., Mittal, M., Mittal, V.: An efficient low computational cost method of R-peak detection[J]. Wirel. Pers. Commun. 118, 359–381 (2021). https://doi.org/10.1007/s11277-020-08017-3

    Article  Google Scholar 

  81. Gupta, V., Mittal, M.: R-peak detection for improved analysis in health informatics[J]. Int. J. Med. Eng. Inform. 13(3), 213–223 (2021). https://doi.org/10.1504/IJMEI.2021.114888

    Article  Google Scholar 

  82. Gupta, V., Mittal, M., Mittal, V.: Chaos theory and ARTFA: emerging tools for interpreting ECG signals to diagnose cardiac arrhythmias[J]. Wirel. Pers. Commun. 118, 3615–3646 (2021). https://doi.org/10.1007/s11277-021-08411-5

    Article  Google Scholar 

  83. Gupta, V., Mittal, M.: Efficient R-peak detection in electrocardiogram signal based on features extracted using Hilbert transform and Burg method[J]. J. Inst. Eng. (India) Ser. B 101(1), 23–34 (2020). https://doi.org/10.1007/s40031-020-00423-2

  84. Gupta, V., Mittal, M., Mittal, V., et al.: A critical review of feature extraction techniques for ECG signal analysis[J]. J. Inst. Eng. (India) Ser. B 102, 1049–1060 (2021). https://doi.org/10.1007/s40031-021-00606-5

  85. Gupta, V., Mittal, M., Mittal, V.: FrWT-PPCA-based R-peak detection for improved management of healthcare system[J]. IETE J. Res. (2021). https://doi.org/10.1080/03772063.2021.1982412

    Article  Google Scholar 

  86. Gupta, V., Mittal, M., Mittal, V., et al.: An efficient AR modelling-based electrocardiogram signal analysis for health informatics[J]. Int. J. Med. Eng. Inform. 14(1), 74–89 (2022). https://doi.org/10.1504/IJMEI.2022.119314

    Article  Google Scholar 

  87. Gupta, V., Mittal, M., Mittal, V., et al.: Detection of R-peaks using fractional Fourier transform and principal component analysis[J]. J. Ambient. Intell. Humaniz. Comput. 13, 961–972 (2022). https://doi.org/10.1007/s12652-021-03484-3

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the National Natural Science Foundation of China (NSFC, Grant No. 51705340,51975104), the Natural Science Foundation of Liaoning Province (Grant No. 20170540745), the National Key R &D Program of China (Grant No. 2018YFA0703200), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Yue.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Abbreviations

Symbols

Full name

MUMPS

Modal utilization method of periodic structure

CWRs

Continuous welded rails

FEM

Finite element model

RPs

Response points

MPs

Measurement points

Appendix B: Evaluation of stochasticity of natural frequencies

The deviation \(\bigtriangleup f_{i,str}\) can be approximated by a generalized form as follows.

$$\begin{aligned} \bigtriangleup f_{i,str}(\xi )= {\textstyle \sum _{m=1}^{L} {\textstyle \sum _{n=1}^{L} A_{mni}(\xi _m,\xi _n)\xi _m \xi _n}} \end{aligned}$$
(B.1)

The expected value of \(E[\bigtriangleup f_{i,str}]\) of \(\bigtriangleup f_{i,str}\) is expressed by the following equation.

$$\begin{aligned} E[\bigtriangleup f_{i,str}]= & {} \iint _{-\infty }^{+\infty }{\textstyle \sum _{m=1}^{L} {\textstyle \sum _{n=1}^{L} A_{mni}(\xi _m,\xi _n)\xi _m \xi _n}}\nonumber \\{} & {} f_{\xi }(\xi _m)f_{\xi }(\xi _n)d\xi _m d\xi _n \end{aligned}$$
(B.2)

Assume that \(\xi \) obeys a Gaussian distribution with mean value zero. \(A_{mni}(\xi _m,\xi _n)\) can be approximately replaced by a constant coefficient irrespective of the value of \(\xi \) for a small \(\sigma _{\xi }^{2}\). Equation B.2 is expressed as follows.

$$\begin{aligned} E[\bigtriangleup f_{i,str}]= & {} {\textstyle \sum _{m=1}^{L}A_{mmi}\int _{-\infty }^{+\infty } \xi _m^2 f_{\xi }(\xi _m) d\xi _m} \nonumber \\= & {} \sigma _{\xi }^2 {\textstyle \sum _{m=1}^{L} A_{mmi}} \end{aligned}$$
(B.3)

where \(\sigma _{\xi }^2\) is the variance of track parameter. It means that the mean of \(\bigtriangleup f_{i,str}\) also exist.

The variance value of \(D[\bigtriangleup f_{i,str}]\) of \(\bigtriangleup f_{i,str}\) is expressed by the following equation.

$$\begin{aligned} D[\bigtriangleup f_{i,str}]= & {} E[[\bigtriangleup f_{i,str}]^2]-[E[\bigtriangleup f_{i,str}]]^2\nonumber \\= & {} E[({\textstyle \sum _{m=1}^{L}} {\textstyle \sum _{n=1}^{L}} A_{mni} \xi _m\xi _n)^2]\nonumber \\{} & {} -[\sigma _{\xi }^2 {\textstyle \sum _{m=1}^{L}}A_{mmi}]^2 \end{aligned}$$
(B.4)

It means that the variance of \(\bigtriangleup f_{i,str}\) also exist.

Assuming deviation \(\xi _m (m=1,2,3,\ldots ,L)\) is not greater than \(\xi _{max}\). According to Eqs. (B.1) and (B.3), Eq. (B.4) meets the following inequality.

$$\begin{aligned} D[\bigtriangleup f_{i,str}]\le & {} \xi _{max}^4 E[({\textstyle \sum _{m=1}^{L}} {\textstyle \sum _{n=1}^{L}} A_{mni})^2]\nonumber \\{} & {} -[\sigma _{\xi }^2 {\textstyle \sum _{m=1}^{L}}A_{mmi}]^2 \end{aligned}$$
(B.5)

Because \(\xi _{max}\),\(A_{mni}\) and \(\sigma _{\xi }^2\) exist, Eq. (B.5) indicates the variance \(D[\bigtriangleup f_{i,str}]\) is bounded.

Appendix C: Neutral temperature

$$\begin{aligned} F=F_T+F_0=-E\alpha A(T-T_L)+F_0 \end{aligned}$$
(C.1)

Neutral temperature \(T_{NT}\) was calculated using Eq. (C.1) by equating \(F=0\).

$$\begin{aligned} T_{NT}=\frac{F_0}{E\alpha A}+ T_L \end{aligned}$$
(C.2)

If \(F\ne 0\), neutral temperature \(T_{NT}\) was calculated using Eqs. (C.1) and (C.2).

$$\begin{aligned} T_{NT}=T+\frac{F}{E \alpha A}=T+\bigtriangleup T_F \end{aligned}$$
(C.3)

where \(\bigtriangleup T_F\) is the equivalent temperature variation of the axial force F.

$$\begin{aligned} \bigtriangleup T_F=-\frac{\bigtriangleup f_{i,temp}}{K_i} \end{aligned}$$
(C.4)

where \(\bigtriangleup f_{i,temp}\) is the temperature-induced variation of the i-th natural frequency, and \(K_i\) is the corresponding temperature sensitivity coefficient, whose unit is Hz/\(^\circ {\textrm{C}}\).

$$\begin{aligned} \bigtriangleup f_i=\bigtriangleup f_{i,temp}+\bigtriangleup f_{i,str} \end{aligned}$$
(C.5)

where \(\bigtriangleup f_i\) and \(\bigtriangleup f_{i,str}\) represent the natural frequency variation and structure-induced frequency variation, respectively.

If N eigenfrequencies are counted, the equivalent temperature variation \(\bigtriangleup T_F\) can be expressed using Eqs. (C.4) and (C.5).

$$\begin{aligned} \bigtriangleup T_F= & {} -\frac{1}{N} {\textstyle \sum _{i=1}^{N}} \frac{\bigtriangleup f_{i,temp}}{K_i}\nonumber \\= & {} -\frac{1}{N} {\textstyle \sum _{i=1}^{N}} \frac{\bigtriangleup f_i-\bigtriangleup f_{i,str}}{K_i} \end{aligned}$$
(C.6)

Because all temperature sensitivity coefficients \(K_i\) (\(1\le i \le N \)) are approximately equal, Eq. (C.6) can also be expressed as follows:

$$\begin{aligned} T_{NT}\approx & {} \lim _{N \rightarrow \infty } \left( T-\frac{1}{N {\bar{K}}} {\textstyle \sum _{i=1}^{N}} \bigtriangleup f_i\right. \nonumber \\{} & {} \left. +\frac{1}{{\bar{K}} }\bigtriangleup f_{str} \right) \end{aligned}$$
(C.7)
$$\begin{aligned} {\bar{K}}= & {} \frac{1}{N} {\textstyle \sum _{i=1}^{N}} K_i \end{aligned}$$
(C.8)

where \({\bar{K}}\) is the equivalent temperature sensitivity coefficient.

$$\begin{aligned} \bigtriangleup f_{str}=\lim _{N \rightarrow \infty } \frac{1}{N} {\textstyle \sum _{i=1}^{N}} \bigtriangleup f_{i,str} \end{aligned}$$
(C.9)

where \(\bigtriangleup f_{i,str}\) can be obtain through experiments, and N is the number of eigenfrequencies.

Equation (C.7) can also be expressed as follows:

$$\begin{aligned} \bigtriangleup T_F\approx & {} \lim _{N \rightarrow \infty } \left( -\frac{1}{N{\bar{K}}} {\textstyle \sum _{i=1}^{N}} \bigtriangleup f_{i}\right. \left. +\frac{1}{{\bar{K}}} \bigtriangleup f_{str}\right) \nonumber \\ \end{aligned}$$
(C.10)

The neutral temperature \(T_{NT}\) can be expressed as follows.

$$\begin{aligned} T_{NT}\approx & {} \lim _{N \rightarrow \infty } \left( T-\frac{1}{N{\bar{K}}} {\textstyle \sum _{i=1}^{N}} \bigtriangleup f_{i}\right. \left. +\frac{1}{{\bar{K}}} \bigtriangleup f_{str}\right) \nonumber \\ \end{aligned}$$
(C.11)

Appendix D: Robustness

Let us define the measurement error \(\varepsilon \), which is a random vector, as the difference between the measurement value \(T_{N,i,m}\) and the real value \(T_{N,i,r}\)

$$\begin{aligned} \varepsilon _i=T_{N,i,m}-T_{N,i,r} \end{aligned}$$
(D.1)

The different statistics of \(\varepsilon \) can be obtained using Monte Carlo simulations. The mean of the measurement error \(\varepsilon \) denoted by \({\bar{\varepsilon }}\) defined as

$$\begin{aligned} {\bar{\varepsilon }} \approx \frac{1}{N} {\textstyle \sum _{i=1}^{N}} \varepsilon _i \end{aligned}$$
(D.2)

The standard deviation of error \(\varepsilon \) denoted by \({\hat{\varepsilon }}\)

$$\begin{aligned} {\hat{\varepsilon }}=\sqrt{\frac{1}{N}}{\textstyle \sum _{i=1}^{N}}(\varepsilon _i-{\bar{\varepsilon }})^2 \end{aligned}$$
(D.3)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, G., Zhang, L., Ren, B. et al. Modal utilization method for measuring the track axial force. Nonlinear Dyn 111, 9177–9199 (2023). https://doi.org/10.1007/s11071-023-08367-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08367-0

Keywords

Navigation